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STATEMENT

Chapter 1 covers basic material concerning group presentations, monoid presenta-

tions and some related topics with them. Most of these are standard and are taken

from [49], [50] and [51].

Chapters 2-5 are my own work, with the exception Section 4.3.4, as well as the

other material indicated within the text.
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ABSTRACT

In Chapter 1 of this thesis we review existing theory concerning group and monoid

presentations, and the concept of pictures over these. We also recall aspherical, combi-

natorial aspherical, n-Cockcroft (n ∈ Z+), efficient and inefficient presentations. Mini-

mality is the final concept introduced in this chapter: we present an important theorem,

due to Lustig in the case of groups and to Pride for monoids.

In Chapter 2 we prove necessary and sufficient conditions for the presentation of

the central extension to be p-Cockcroft (p a prime or 0). The starting point of this

result is the joint paper of Baik-Harlander-Pride. We end the chapter by giving some

examples.

In Chapter 3 we prove a theorem on the efficiency of standard wreath products of

two finite groups. We also present some applications of the theorem and end by giving

examples.

Chapter 4 sees discussion on the semi-direct product of any two monoids. In par-

ticular we prove necessary and sufficient conditions for the standard presentation of

the semi-direct product of any two monoids to be p-Cockcroft (p a prime or 0). We

end by giving some applications of this theorem to the direct product of two monoids

and the semi-direct product of two finite cyclic monoids.

We begin Chapter 5 with an application of the main theorem of Chapter 4, namely

we give necessary and sufficient conditions for a presentation of the semi-direct product

of a one-relator monoid by an infinite cyclic monoid to be p-Cockcroft (p a prime or

0), and give some examples of this. Following this we present the main theorem of this

chapter, which is sufficient conditions for the presentation of a semi-direct product of

a one-relator monoid by an infinite cyclic monoid to be minimal but inefficient. We

end by giving some examples.
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NOTATION

Let G and H be groups.

G×H the direct product

G⊕H the direct sum (where G, H are abelian)

G⊗H the tensor product (where G, H are abelian)

Goθ H the semi-direct product of G by H with H-action θ

G oH the standard wreath product of G by H

G/H the quotient group of G by a normal subgroup H

G ∼= H G is isomorphic to H

G′ the derived group (commutator subgroup) of G

Gab, H1(G) the first homology group of G

H2(G) the second homology group of G (= Schur multiplier)

Aut(G) the group of all automorphisms of G (see note page x)

[a, b] the commutator of a and b (= aba−1b−1, a, b ∈ G)

Zn the finite cyclic group of order n

t(A) Let A be a non-trivial finite abelian group. Then A can be uniquely

decomposed [54] into a direct sum of cyclic groups, that is,

A = Zm1 ⊕ Zm2 ⊕ · · · ⊕ Zmn , where m1 > 1 and mi | mi+1

for all i = 1, 2, · · · , n− 1. Then t(A) is m1

(the first torsion number). If A is trivial then t(A) = 0

ZG the integral group ring

Zn the free abelian group of rank n

P = 〈x ; r〉 group presentation

F (x) the free group generated by x

G(P) group defined by P

[W ] free equivalence class containing the word W

W the element of G(P) represented by W

L(W ) length of W

Lx(W ) lenght of W with respect to x
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expx(W ) the exponent sum of x in W

∼ freely equivalent

∼P equivalent (relative to P)

χ(P) Euler characteristic of P (= 1− |x|+ |r|)

χ(G) Euler characteristic of G

δ(G) = 1− rkZ(H1(G)) + d(H2(G))

rkZ( ) the Z-rank of the torsion free part

d( ) the minimal number of generators

def(P) deficiency of P

def(G) deficiency of group G

(T1)±1, (T2)±1 Tietze transformations

P a picture over P

∂P the boundary of P

W (P) the boundary label of P

< P > the equivalence class containing P

π2(P) the second homotopy module

expR(P) exponent sum of R in P

∆ disc in the picture P

∂∆ boundary of ∆

γ a transverse path

W (γ) the label on γ

γ a spray

I2(P) the second Fox ideal over P

X set of generating pictures of π2(P)

Let M and K be monoids.

M oθ K the semi-direct product of M by K with K-action θ

M ∼= K M is isomorphic to K

End(M) the monoid of all endomorphisms of M (see note on page x)
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Z+n the free abelian monoid of rank n

P = [y ; s] monoid presentation

F̂ (y) the free monoid generated by y

M(P) monoid defined by P

W a positive word on y

[W ] free equivalence class containing W

W the element of M(P) represented by W

L(W ) length of W

Ly(W ) length of W with respect to y

∼P equivalent (relative to P)

χ(P) Euler characteristic of P (= 1− |y|+ |s|)

χ(M) Euler characteristic of the monoid M

δ(M) = 1− rkZ(H1(M)) + d(H2(M))

rkZ( ) the Z-rank of the torsion free part

d( ) the minimal number of generators

def(P) deficiency of P

def(M) deficiency of monoid M

∂

∂y
the Fox derivation for a fixed y ∈ y

A an atomic monoid picture

P a path in D(P), that is, a picture over P

expS(P) the exponent sum S in P

I
(l)
2 (P) the right second Fox ideal over P

I
(r)
2 (P) the left second Fox ideal over P

D(P) Squier complex

Y is a trivialiser of D(P)

Γ = (V,E) a graph:

V vertex set

E edge set

ι(e) inital vertex of edge e
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τ(e) terminal vertex of edge e

−1 inverse function

In set theory:

A ∪B the union of the sets A and B

A ⊆ B A is a subset of B

|A| the cardinality of A

Let Z and Z+ be the sets of all integer and positive integer numbers.

For any a, b ∈ Z,

hcf(a, b) highest common factor of a and b

Throughout this thesis, all maps will be written on the left, except when

we work with the monoid End( ) and the group Aut( ) then we will write

maps on the right.
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Chapter 1

Preliminaries

1.1 Words

Let x be a non-empty set. We define x−1 to be a set in one-to-one correspondence with

x, x ↔ x−1 (x ∈ x), and let x±1 = x ∪ x−1. The elements of x±1 are called letters.

Then, a word W (on x) is an expression

xε11 x
ε2
2 · · ·xεnn , (1.1)

where n > 0, xi ∈ x, εi = ±1 and 1 6 i 6 n. The initial letter of W is ι(W ) = xε1 and

the terminal letter of W is τ(W ) = xεn . If n = 0 then W is the empty word, which we

denote by 1. We say W is a positive word on x if either n = 0 or n > 0 and εi = +1,

1 6 i 6 n. The inverse of W , denoted W−1, is the word

x−εnn x
−εn−1

n−1 · · ·x−ε11 .

Let W be a word as in (1.1). The length of W , denoted by L(W ), is the number

of the letters involved in W . The length of W with respect to x, denoted by Lx(W ),

is
∑
xi=x

|εi|. Also, the exponent sum of x in W , denoted by expx(W ), is
∑
xi=x

εi. If W

is empty word then Lx(W ) = 0 and expx(W ) = 0. Note that if W is a positive word

then Lx(W ) = expx(W ).

Let W , U be two words on x. The product of W and U , denoted WU , is the
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juxtaposition of W followed by U . By this binary operation, the set F̂ (x) of all positive

words on x then is a monoid with identity 1 called the free monoid on x.

Two words W , W ′ on x are freely equal, denoted W ∼ W ′, if one can be obtained

from the other by a finite number of applications of the following operations.

(1) : Deletion of a pair of inverse letters xεx−ε, ε = ±1.

(1)−1 : Insertion of a pair of inverse letters xεx−ε, ε = ±1.

We denote the free equivalence class containing W by [W ]. Let F (x) be the set of all

free equivalence classes of words on x. A multiplication can be defined on F (x) by

[W ][U ] = [WU ], and one can check that this is well-defined. By this multiplication,

F (x) is then a group, the free group on x (see [35, Chapter 1]). We note that sometimes

we may simply write W for the free equivalence class [W ] for any word W on x, if it

does not cause any confusion.

If W ′ = UWV (U, W, V are words on x) then W is a subword of W ′. We say that

a word on x is reduced if it does not contain any subwords xεx−ε (x ∈ x, ε = ±1).

Moreover, xε11 x
ε2
2 · · · xεnn (n > 0, xi ∈ x, εi = ±1, 1 6 i 6 n) is cyclically reduced if it is

reduced and xε11 6= x−εnn .

The proof of the following theorem can be found in [18].

Theorem 1.1.1 (Normal Form Theorem) There is exactly one reduced word in

each equivalence class.

1.2 Group presentations

A group presentation

P = 〈x ; r〉 (1.2)

is a pair, where x is a set (the generating symbols) and r is a set of non-empty, cyclically

reduced words on x (the relators). We say that P is finite if x and r are both finite.

We should remark that we will use angular brackets 〈· · ·〉 to denote a group presen-

tation; square brackets [· · ·] to denote a monoid presentation (see Section 1.3).
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Throughout this thesis, all group presentations will be assumed to be

finite unless stated otherwise.

In order to define a group associated with P , we intoduce the following elementary

operations (in addition to the operations (1) and (1)−1 above) on words on x. Let W

be a word on x.

(2) : If W contains a subword Rε (R ∈ r, ε = ±1) then delete it.

(2)−1 : Insert Rε (R ∈ r, ε = ±1) at any position in W .

Two words W1, W2 on x are equivalent (relative to P), denoted W1 ∼P W2, if there is

a finite chain of elementary operations of types (1)±1, (2)±1 leading from W1 to W2.

Now ∼P is an equivalence relation on the set of all words on x. Let [W ]P (or simply

[W ]) denote the equivalence class containing W . A multiplication can be defined on

equivalence classes by [W1]P .[W2]P = [W1W2]P , and this multiplication is easily checked

to be well defined. The set of all equivalence classes together with this multiplication

form a group, the group defined by P , denoted G(P). The identity in G(P) is [1]P .

A group G is said to be presented (or defined) by P if G ∼= G(P).

Let N be the normal closure of {[R] : R ∈ r} in F (x). The proof of the following

lemma can be found in [35, Proposition 4].

Lemma 1.2.1

G(P) ∼= F (x)/N.

We will denote the element [W ]N of F (x)/N (∼= G(P)) by W .

1.2.1 Tietze transformations

Let P = 〈x ; r〉 be a group presentation. We define elementary Tietze transformations

on P as follows.

(T1) If s is a finite set of words on x and if each S ∈ s is a consequence of r (that is,

[S] belongs to the normal closure of {[R] : R ∈ r}), then replace P by

〈x ; r, s〉 .

3



(T2) If t is a finite set of symbols disjoint from x, and Ut (t ∈ t) is a word on x, then

replace P by 〈
x, t ; r, t−1Ut (t ∈ t)

〉
.

The proof of the following theorem can be found in [47].

Theorem 1.2.2 (Tietze Theorem) Two presentation P1 and P2 define the same

group if and only if one can be transformed into the other by a finite number of opera-

tions (T1), (T1)−1, (T2), (T2)−1.

1.2.2 Pictures over group presentations

The material in this section may also be found in [11] and [49].

Let P = 〈x ; r〉 be a group presentation. A picture P over P is a geometric

configuration consisting of the following:

(1) A disc D2 with basepoint O on the boundary ∂D2 of D2.

(2) Disjoint discs ∆1, ∆2, · · · , ∆n in the interior of D2. Each ∆i has a basepoint Oi

on the boundary ∂∆i of ∆i.

(3) A finite number of disjoint arcs α1, α2, · · · , αm where each arc lies in the closure

of D2 −
n⋃
i=1

∆i and is either a simple closed curve having trivial intersection with

∂D2∪∂∆1∪∆2∪· · ·∪∂∆n, or is a simple non-closed curve which joins two points

of ∂D2 ∪ ∂∆1 ∪∆2 ∪ · · · ∪ ∂∆n, neither point being a base point. Each arc has a

normal orientation, indicated by a short arrow meeting with the arc transversely

and is labelled by an element of x ∪ x−1 which is called the label of the arc.

(4) If we travel around ∂∆i once in the clockwise direction starting from Oi and

read off the labels on arcs encountered (if we cross an arc, labelled x say, in the

direction of its normal orientation, then we read x, whereas if we cross the arc

in the direction of its opposite orientation, then we read x−1), then we obtain a

word which belongs to r ∪ r−1. We call this word the label of ∆i. If s is a subset

of r, then a disc labelled by an element of s ∪ s−1 is called an s-disc.

4



When we refer the discs of P we mean the discs ∆1, ∆2, · · · , ∆n, not the ambient

disc D2. A closed arc which encircles no disc or arc of P is called a floating circle.

We define ∂P to be ∂D2. The label on P (denoted by W (P)) is the word read off by

travelling around ∂P once in the clockwise direction starting from O.

We say that P is spherical if no arcs meet ∂P. If P is spherical we often omit ∂P.

A transverse path γ in a picture P is a path in the closure of D2 −
n⋃
i=1

∆i which

intersects the arcs of P only finitely many times. Reading off the labels on the arcs

encountered while travelling along a transverse path from its initial point to its terminal

point gives a word on x denoted W (γ). Let γ be a simple closed transverse path in P.

The part of P enclosed by γ is called a subpicture of P. If γ intersects no arcs, then the

part of P enclosed by γ is called a spherical subpicture of P.

A spray for P is a sequence γ = (γ1, γ2, · · · , γn) of simple transverse paths satisfying

the following: for i = 1, 2, · · · , n, γi starts at O and ends at the basepoint of ∆i, for

1 6 i < j 6 n, γi and γj intersect only at O; travelling around O clockwise in P we

encounter these transverse paths in order γ1, γ2, · · · , γn.

Example 1.2.3 Let P = 〈a, b ; a2, b3, [a, b]〉. Then
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is a picture over P. In this picture we have nine discs ∆1,∆2, · · · ,∆9 with each ∆i

(1 6 i 6 9) having a basepoint Oi on the boundary ∂∆i. The label, for example,

of the disc ∆4 is a2, ∆5 is b3 and ∆9 is [a, b]−1. Also, the closed arc labelled by a
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is a floating circle but the closed arc labelled by b is not. We get the label on P is

W (P) = bbbb−1b−1ab−1a−1.

We also have an example of spherical picture P2 over P as follows.
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Let us fix some simple closed transverse paths γ1, γ2 and non-closed transverse path

γ3 into the picture P1 depicted as follows.
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The part enclosed by γ1 is a spherical subpicture and the part enclosed by γ2 is a non-

spherical subpicture of P1. We have W (γ2) = b2a−1ba and W (γ3) = a2b−1.
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Here γ = (γ1, γ2, γ3, γ4, γ5) is a spray for P2 with W (γ1) = 1 = W (γ2), W (γ3) =

aba−1, W (γ4) = ab2a−1 and W (γ5) = a. ♦

Throughout this thesis, each of the broken lines in a picture represents

a transverse path, and they are not a part of this picture.

A cancelling pair in P is a spherical subpicture with exactly two discs whose base-

points lie in the same region. This means, for example, that

���� ���� ���� ����
?

?

?
?

?

?

?
?

a

b

a
b

a

b

a
b

are cancelling pairs, whereas

���� ����
?

?

?
?

a

b

a
b

is not.

We now introduce some elementary operations on spherical pictures as follows.

(A) Deletion of a floating circle.

(A)−1 Insertion of a floating circle.

(B) Deletion of a cancelling pair.

(B)−1 Insertion of a cancelling pair.

(C) Bridge move:
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Two spherical pictures are equivalent if one can be obtained from the other by a

finite number of operations (A), (A)−1, (B), (B)−1, (C).

Let P1, P2 be spherical pictures over P . Then the mirror image of P1 will be denoted

by −P1, and P1 + P2 is the picture obtained by putting P2 next to P1. This can be

illustrated as follows.
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We write P1 − P2 for P1 + (−P2). For any picture P over P , P− P is equivalent to the

empty picture, and P1 + P2 = P2 + P1.

Let P be any spherical picture over P . We denote by < P > the equivalence class

containing P. The set of all equivalence classes of spherical pictures over P forms an

abelian group under the following well-defined binary operation.

< P1 > + < P2 >=< P1 + P2 > .

Let W be a word on x, and let P be a spherical picture over P . We then form a

new spherical picture over P denoted PW which is obtained from W by surrounding P

with a collection of concentric arcs with total label W . Then this can be illustrated as

follows (with W = x1x
−1
2 x1).
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There is a well-defined G(P)-action on equivalence classes of spherical pictures given

by

W . < P >=< PW > (W ∈ G).

We then obtain a ZG(P)-module π2(P) called the second homotopy module of P .

There is an embedding µ of π2(P) into the free module
⊕
R∈r

ZG(P)eR defined as

follows (see also [11], [13], [49]).

Let < P >∈ π2(P) and suppose that P has discs ∆1, ∆2, · · · , ∆n with the label

Rε1
1 , R

ε2
2 , · · · , Rεn

n respectively (Ri ∈ r, εi = ±1, i = 1, 2, · · · , n). Let γ = (γ1, · · · , γn)

be a spray, as defined previously. Recall that W (γi) is the label on γi which represents

an element of G. Then

µ(< P >) =
n∑
i=1

εiW (γi)eRi .

We often write µ(P) instead of µ(< P >).

Example 1.2.3 (continued) For the spherical picture P2, we get

µ(P2) = (−1 + a)eb3 − (1 + aba−1 + ab2a−1)e[a,b].

♦

For each spherical picture P over P and for each R ∈ r, let λP,R be the coefficients

of eR in µ(P). Let I2(P) be the 2-sided ideal in ZG generated by the set

{λP,R : P is a spherical picture, R ∈ r}.

9



This ideal is called the second Fox ideal of P . The concept of Fox ideals has been

discussed in [43], [44]. In fact we need this concept for Theorem 1.2.17 below which is

a test of minimality of group presentations.

Let us consider a collection X of spherical pictures over P . We introduce two further

operations on spherical pictures.

(D) Delete a spherical subpicture which is a copy of some elements of X ∪ −X.

(D)−1 The opposite of (D).

Two spherical pictures will be said to be equivalent (relative to X) if one can be

transformed to the other by a finite number of operations (A)±1, (B)±1, (C) and (D)±1.

Then, by [49] (see Theorem 2.6∗, Corollary 1), we have

Theorem 1.2.4 The elements < P > (P ∈ X) generate π2(P) if and only if every

spherical picture is equivalent to the empty picture (relative to X).

We say that X generates π2(P) (or X is a set of generating pictures) if the elements

< P > (P ∈ X) generate π2(P).

It can be shown that if X is a set of generating pictures, then I2(P) is generated

(as a 2-sided ideal) by

{λP,R : P ∈ X, R ∈ r}.

Example 1.2.5 Let G = Z3 ⊕ Z be defined by P = 〈a, b ; a3, [a, b]〉. Then, by [5],

π2(P) is generated by

j j j j j
j

j
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Then, µ(P1) = (1−a)ea3 and µ(P2) = (b−1)ea3 +(1+bab−1 +ba2b−1)e[a,b]. Thus, I2(P)

is generated by {b−1, 1+ bab−1 + ba2b−1, 1−a}. Note that bab−1 = a and ba2b−1 = a2.

1.2.3 Aspherical and Cockcroft presentations

Definition 1.2.6 Let P be as in (1.2). Then P is said to be aspherical if π2(P) = 0.

A group G is said to be aspherical if it is defined by an aspherical presentation.

We remark that all free groups and torsion free one-relator groups [45] are aspherical.

Some other examples of aspherical presentations can be found, for instance in [12], [16],

[49].

Definition 1.2.7 Let P be as in (1.2). Then P is said to be combinatorial as-

pherical (CA) if π2(P) is generated by a set of pictures containing exactly two discs.

A group G is said to be combinatorial aspherical (CA) if it can be defined by a CA

presentation.

Example 1.2.8 Let P = 〈a ; an〉 be a presentation of cyclic group of order n. It is

known that π2(P) is generated by the following single picture.

��
��
��
��

...

?
an

Therefore P is CA. ♦

One-relator groups with torsion are CA (but not aspherical) (see [45]). Some other

examples of combinatorial aspherical presentations can also be found, for example, in

[12], [16], [30], [31], [49].

For any picture P over P and for any R ∈ r, the exponent sum of R in P, denoted by

expR(P) is the number of discs of P labelled by R, minus the number of discs labelled by

R−1. We remark that if pictures P1 and P2 are equivalent, then expR(P1) = expR(P2)

for all R ∈ r.
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Definition 1.2.9 Let P be as in (1.2), and let n be a non-negative integer. Then P is

said to be n-Cockcroft if expR(P) ≡ 0 (mod n), (where congruence (mod 0) is taken

to be equality) for all R ∈ r and for all spherical pictures P over P. A group G is said

to be n-Cockcroft if it admits an n-Cockcroft presentation.

Remark 1.2.10 To verify that the n-Cockcroft property holds, it is enough to check

for pictures P ∈ X, where X is a set of generating pictures.

The 0-Cockcroft property is usually just called Cockcroft.

In practice, we usually take n to be 0 or a prime p.

The Cockcroft property has received considerable attention in [22], [25], [26], [27]

and [41]. The p-Cockcroft property has been discussed for example in [41].

Example 1.2.11 Let P = 〈x, y, z ; [x, y], [x, z], [y, z]〉. Then one may refer to [5] to

show that π2(P) is generated by

j j j j
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Now since exp[x,y](P) = exp[x,z](P) = exp[y,z](P) = 1− 1 = 0 then P is Cockcroft.

Example 1.2.12 Let P = 〈x, y ; ;x3, y3, [x, y]〉. Then, by [5], π2(P) is generated by
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Then expx3(P1) = expy3(P2) = expx3(P3) = expy3(P4) = 1−1 = 0, exp[x,y](P3) = 3 and

exp[x,y](P4) = −3. Thus P is 3-Cockcroft.

Note that

Aspherical⇒ CA⇒ Cockcroft⇒ n-Cockcroft (n ∈ Z+).

1.2.4 Efficiency of group presentations

Let P be as in (1.2). Then we define the Euler characteristic of P as follows.

χ(P) = 1− |x|+ |r|.

Let

δ(G) = 1− rkZ(H1(G)) + d(H2(G)), (1.3)

where rk( ) denotes the Z-rank of the torsion-free part and d( ) means the minimal

number of generators. Then it is known (see [5], [10], [23]) that for the presentation

P , it is always true that

χ(P) > δ(G).

Then we define

χ(G) = min{χ(P) : P a finite presentation for G}.
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We should remark that some authors consider just

−|x|+ |r|,

and call this the deficiency of the presentation P , denote by def(P). The deficiency

of a group G, denote by def(G), is then taken to be the minimum deficiencies of all

finite presentations of G. Clearly

1 + def(P) = χ(P),

1 + def(G) = χ(G).

Definition 1.2.13 Let G be a group.

i) A presentation P0 for G is called minimal if

χ(P0) 6 χ(P),

for all presentations P of G.

ii) A presentation P is called efficient if

χ(P) = δ(G).

iii) G is called efficient if

χ(G) = δ(G).

Lemma 1.2.14 (i) If χ(G) 6 0 then G must be infinite.

(ii) If G is finite cyclic then χ(G) = 1.

Proof.

(i) It can be found, for example in [46] or [47], that for a presentation of the group

G, if the number of generators is greater than the number of relators then G is infinite.

(ii) Let G be a cyclic group of order n with the presentation P = 〈x ; xn〉. By

definition, χ(G) 6 χ(P), that is χ(G) 6 1. But, by (i), χ(G) cannot be less than 1,

14



otherwise G would be infinite cyclic, a contradiction. Hence χ(G) must be equal to 1,

as required. �

Examples of efficient groups are finitely generated abelian groups (Epstein [23]),

fundamental groups of closed 3-manifolds [23]; also finite groups with balanced presen-

tations (such finite groups have trivial Schur multiplier [28]). Finite metacyclic groups

are efficient. This was shown by Beyl [8] and Wamsley [59]. Infinite metacyclic groups

however need not be efficient, a result due to Baik and Pride [5] (see also [3]). In [28]

Harlander proved that a finitely presented group embeds into an efficient group. For

more references on the subject of efficiency see Baik, Pride [4], Beyl, Rosenberger [9],

Champbell, Robertson, Williams [14] (and [15]), Harlander [29], Johnson, Robertson

[37], Kenne [39], Robertson, Thomas, Wotherspoon [53].

The following result which is essentially due to Epstein [23] can be found in [41,

Theorem 2.1].

Theorem 1.2.15 Let P be as in (1.2). Then P is efficient if and only if it is p-

Cockcroft for some prime p.

As a consequence of the above theorem, we have

Corollary 1.2.16 Let P be as in (1.2). If P is Cockcroft then P is efficient.

Not all finitely presented groups are efficient.

B.H.Neumann [48] asked whether a finite group G with δ(G) = 1 must be efficient.

Swan [57] gave examples (of finite metabelian groups) showing this is not the case.

These were the first examples of inefficient groups. In [61], Wiegold produced a differ-

ent construction to the same end, and then Neumann added a slight modification to

reduce the number of generators. In [42], Kovacs generalized both the above construc-

tions, and he showed how to construct more inefficient finite groups (including some

perfect groups) whose Schur multiplicator is trivial. In [53], Robertson, Thomas and

Wotherspoon examined a class of groups, orginally introduced by Coxeter. By using a

symmetric presentation, they showed that groups in this class are inefficient. They also

proved that every finite simple group can be embedded into a finite inefficient group.
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Lustig [44] gave the first example of a torsion-free inefficient group. Other examples

were found by Baik (see [3]), using generalized graph products. In [4], Baik and Pride

gave sufficient conditions for a Coxeter group to be efficient. They also found a family

of inefficient Coxeter group Gn,k (n > 4, k an odd integer). For a fixed k,

χ(Gn,k)− δ(Gn,k)
n−→∞.

We remark that there is no algorithm to decide for any finitely presented group

whether or not the group is efficient (see [1]).

The next result, due to Lustig [44] (see also [41]) gives a method of showing that a

presentation is minimal.

Theorem 1.2.17 ([44]) Let G be a group with the presentation P as in (1.2). If there

is a ring homomorphism φ from ZG into the matrix ring of all k× k-matrices (k > 1)

over some commutative ring A with 1, such that φ(1) = 1, and if φ maps the second

Fox ideal I2(P) to 0, then P is minimal.

Example 1.2.18 ([3]) Let G be a group defined by the presentation

P =
〈
a, b ; a5, aba−3b−1

〉
.

π2(P) is generated by
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It is clear that P is not p-Cockcroft for any prime p, and hence not efficient by Theorem

1.2.15. We will show that P is minimal and so there could not be an efficient presen-
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tation which defines the group G. Thus we can conclude that G is not p-Cockcroft for

any prime p.

From the above pictures, I2(P) is generated by

1− a, 1 + a+ a2 + a3 + a4, 3b− 1.

Let < x > be an infinite cyclic group and consider the ring homomorphism

ZG −→ Z < x >

arising from the group homomorphism defined by

a 7−→ 1, b 7−→ x.

If we consider

Z < x >−→ Z5

by sending all integer coefficients to their congruence modulo 5 and sending x to the

congruence class of 2, then the mapping

ZG −→ Z < x >−→ Z5

sends the generators of I2(P) to 0 and 1 to 1. Hence, by Theorem 1.2.17, P is minimal.

♦

1.3 Monoid presentations

A monoid presentation

P = [y ; s] (1.4)

is a pair, where y is a set (the generating symbols) and each S ∈ s (a relation) is an

ordered pair (S+, S−), where S+ and S− are distinct, positive words on x. We remark

that one of S+, S− may be the empty positive word. We usually write S : S+ = S−.

Once again, we say that P is finite if y and s are both finite.

Throughout this thesis, all monoid presentations will be assumed to be

finite unless stated otherwise.
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In order to define a monoid associated with P we introduce the following elementary

operation on positive words on y. Let W be a positive word on y.

(•) : If W contains a subword Sε, where ε = ±1, S+ = S− ∈ s, then replace it by S−.

Two positive words W1, W2 on y are equivalent (relative to P), denoted W1 ∼P W2, if

there is a finite chain of elementary operations of type (•) leading from W1 to W2. This

is an equivalence relation on the set of all positive words on y. Let [W ]P denote the

equivalence class containing W . A multiplication can be defined on equivalence classes

by [W1]P .[W2]P = [W1W2]P . It is easy to check that this multiplication is well-defined.

The set of all equivalence classes together with this multiplication form a monoid, the

monoid defined by P , denoted M(P). The identity in M(P) is [1]P .

For a positive word W on y, we will denote the element [W ]P by W .

1.3.1 Fox derivations

Let F̂ (y) be the free monoid on y. For a fixed y ∈ y, we define a function

∂

∂y
: F̂ (y) −→ ZF̂ (y)

as follows. Let W ∈ F̂ (y) and write

W = W0yW1y · · ·Wr−1yWr, (1.5)

where r > 1, W0,W1, · · · ,Wr are positive words on y − {y}. Then

∂W

∂y
=

r∑
i=1

W0yW1y · · ·Wi−1.

We then extend
∂

∂y
to a function

∂

∂y
: ZF̂ (y) −→ ZF̂ (y)

given by

∂

∂y
(n1W1 + n2W2 + · · ·+ nrWr) =

r∑
i=1

ni
∂Wi

∂y
,

18



where r > 0, n1, · · · , nr ∈ Z, W1, · · · ,Wr ∈ F̂ (y).

Let M be a monoid with the presentation P , as in (1.4). We have the natural ring

homomorphism

ZF̂ (y) −→ ZM

induced by the monoid homomorphism

F̂ (y) −→M, W 7−→ W.

We write
∂M

∂y
or

∂P

∂y
for the composition

ZF̂ (y)
∂
∂y−→ ZF̂ (y) −→ ZM.

Thus, for W ∈ F̂ (y) as in (1.5),

∂MW

∂y
=

r∑
i=1

W0yW1y · · ·Wi−1.

Let

aug : ZM −→ Z, m 7−→ 1

be the augmentation map. Then we have

Lemma 1.3.1 For a fixed y ∈ y,

aug(
∂MW

∂y
) = Ly(W ).

Proof.

aug(
∂MW

∂y
) = aug(

r∑
i=1

W0yW1y · · ·Wi−1)

= r

= Ly(W ) since the number of all occurences

of y in W is the length of y in W.

�
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1.3.2 Pictures over monoid presentations

The material used in this section may also be found in [50], [51].

Let P be a monoid presentation, as in (1.4), and let F̂ (y) be the free monoid on y.

If we have an element

W = USεV (U, V ∈ F̂ (y), S ∈ s, ε = ±1)

of F̂ (y), then we can replace Sε by S−ε to get a word

W ′ = US−εV.

This can be represented by a geometric object called an atomic (monoid) picture

A = (U, S, ε, V )

as depicted in Figure 1.1.
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B
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U V

A

Sε

S−ε

Figure 1.1:

We remark that the disc labelled by S in an atomic picture A is said to be positive

if ε = 1, and said to be negative if ε = −1.

We have a graph Γ (= Γ(P)) associated with P , called the Squier graph, which

is defined as follows. The vertex set is F̂ (y), and the edge set is the collection of all

atomic monoid pictures. For an orientation of Γ we will take all edges (U, S,+1, V ).

For an atomic picture A, as in Figure 1.1, the word we read off by travelling along the

top of the atomic picture from left to right gives the initial function, denoted by

ι(A) = USεV,
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and the word we read off by travelling along the bottom gives the terminal function,

denoted by

τ(A) = US−εV.

Also, the mirror image of A is denoted by

A−1 = (U, S,−ε, V ).

A path

P = A1A2 · · ·An (1.6)

(where each Ai is an atomic picture for i = 1, 2, · · · , n) in Γ will also be called a monoid

picture over P . If ι(A1) = τ(An) then P is called a spherical monoid picture over P ,

otherwise P is called a non-spherical monoid picture over P . For example,
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A1

A2

is a non-spherical monoid picture, since ι(A1) 6= τ(A2). (For an example of spherical

monoid picture see Figure 1.2).

Note that we also have the term subpicture (that is, subpath) of monoid pictures.

For example, the non-spherical picture depicted in the above figure is a subpicture of

the spherical monoid picture as shown in Figure 1.2.

There is a left action of F̂ (y) on Γ defined as follows. Let C ∈ F̂ (y).

i) Let W be a vertex of Γ. Then we define C.W to be CW (product in F̂ (y)).

ii) Let A, as in Figure 1.1, be an edge of Γ. Then C.A = (CU, S, ε, V ) and this can

be illustrated by
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C

We can define a similar right action of F̂ (y) on Γ. The left and right actions of

F̂ (y) on Γ extends to actions on pictures. That is, if P is a picture as in (1.6), and if

W,V ∈ F̂ (y) then

W.P.V = (W.A1.V )(W.A2.V ) · · · (W.An.V ).

Example 1.3.2 Let P = [a, b, c ; ab = ba, bc = cb, ca = ac], and let

A1 = (1, ab = ba,+1, c), A2 = (b, ac = ca,−1, 1),

A3 = (1, bc = cb,+1, a), A4 = (c, ba = ab,−1, 1),

A5 = (1, ca = ac,+1, b), A6 = (a, cb = bc,−1, 1).

Then τ(Ai) = ι(Ai+1) for i = 1, 2, · · · , 6, and ι(A1) = τ(A6) = abc. So P = A1A2 · · ·A6

is a spherical monoid picture (see Figure 1.2.(i)). Now by a left action by a and a right

action by c, we obtain another spherical monoid picture. This can be illustrated as in

Figure 1.2.(ii). ♦

We now introduce some operations on spherical monoid pictures. Let A, B be

atomic pictures.

(A) Delete an inverse pair AA−1.

(A)−1 The opposite of (A).

(B) Replace a subpicture (A . ι(B))(τ(A) .B) by (ι(A) .B)(A . τ(B)) or vice versa (see

Figure 1.3).

Two spherical monoid pictures are said to be equivalent if one can be obtained from

the other by a finite number of operations (A)±1, (B).
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Figure 1.2:

The graph Γ with the above equivalence relation on paths, is called the Squier

complex of P denoted by D(P) (see, for example, [51]). (More formally, D(P) consist

of the graph Γ, together with defining paths which are all the closed paths

[A, B] = (A . ι(B))(τ(A) .B)(A−1 . τ(B))(ι(A) .B−1),

(A, B are atomic pictures), as shown in Figure 1.3.)

Let Y be a set of spherical monoid pictures. We introduce two further operations

on spherical monoid pictures as follows.

(C) Delete subpictures of the form W .P±1 . V (P ∈ Y, W,V ∈ F̂ (y)).

(C)−1 The opposite of (C).

Two spherical monoid pictures will be said to be equivalent (relative to Y) if one can

be transformed to other by a finite number of operations (A)±1, (B), (C)±1.
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By [51, Theorem 5.1], we say that Y is a trivialiser of D(P) if every spherical

picture is equivalent to an empty picture (relative to Y). Some examples and the

details of the trivialiser can be found in [20], [51], [52], [56], [60]. In Section 4.3.4, as

an example of this, we will give a trivialiser set of the Squier complex of a presentation

of the semi-direct product of any two monoids, as found by Wang (see [60]).

Let M be a monoid with the presentation P , as in (1.4). Let

P (l) =
⊕
S∈s

ZMeS and P (r) =
⊕
S∈s

fSZM

be the free left and right ZM -modules with bases

{eS : S ∈ s} and {fS : S ∈ s},

respectively. For an atomic picture A = (U, S, ε, V ) (U, V ∈ F̂ (y), S ∈ s, ε = ±1), as

in Figure 1.1, we define

eval(l)(A) = εUeS ∈ P (l) and eval(r)(A) = εfSV ∈ P (r),

where U, V ∈M(P) ∼= M . For any spherical monoid picture P, as in (1.6), we define

eval(l)(P) =
n∑
i=1

eval(l)(Ai) ∈ P (l),

eval(r)(P) =
n∑
i=1

eval(r)(Ai) ∈ P (r).

We let λP,S be the coefficient of eS in eval(l)(P), so we can write

eval(l)(P) =
∑
S∈s

λP,SeS ∈ P (l).
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Similarly, we let ηP,S be the coefficient in eval(r)(P), so

eval(r)(P) =
∑
S∈s

fSηP,S ∈ P (r).

Example 1.3.2 (continued) Let

R : ab = ba, S : bc = cb, T : ca = ac.

Then we have

eval(l)(A1) = eR, eval(l)(A2) = −beT , eval(l)(A3) = eS,

eval(l)(A4) = −ceR, eval(l)(A5) = eT , eval(l)(A6) = −aeS.

Thus

eval(l)(P) = λP,ReR + λP,SeS + λP,T eT ,

where

λP,R = 1− c, λP,S = 1− a, λP,T = 1− b.

♦

Definition 1.3.3 Let I
(l)
2 (P), I

(r)
2 (P) be the 2-sided ideals of ZM generated by the sets

{λP,S : P is a spherical monoid picture, S ∈ s},

{ηP,S : P is a spherical monoid picture, S ∈ s},

respectively. Then these ideals are called the second Fox ideals of P.

Remark 1.3.4 If Y is a trivializer of D(P) then I
(l)
2 (P) and I

(r)
2 (P) are generated (as

2-sided ideals) by the sets

{λP,S : P ∈ Y, S ∈ s} and {ηP,S : P ∈ Y, S ∈ s},

respectively.

Example 1.3.5 Let P = [a, b, c ; aba = ba2, ac = ca3, bc = cb]. Then, by [60], a triv-

ialiser Y of D(P) can be taken to contains a single monoid picture P depicted in Figure

1.4. Let
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R : aba = ba2, S : ac = ca3, T : bc = cb.

Then

eval(l)(P) = λP,ReR + λP,SeS + λP,T eT ,

where

λP,R = 1− c(1 + a+ a2), λP,S = b− 1, λP,T = 1− a.

Thus, by the above remark, the second Fox ideal I
(l)
2 (P) is generated by the set

{1− c(1 + a+ a2), b− 1, 1− a}. ♦

Note that we need the second Fox ideal concept for Theorem 1.3.14 (see below).
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1.3.3 Aspherical and Cockcroft monoid presentations

Definition 1.3.6 Let P be as in (1.4). Then P is said to be aspherical if there are

no non-trivial spherical monoid pictures over P.

Note that all free monoids are aspherical. In [34, Section 5] Ivanov proved that if M

is a one-relator monoid, with relator S, say and if ι(S+) 6= τ(S−) (or τ(S+) 6= ι(S−))

then M is aspherical. Some other examples of asphericity can be found, for instance

in [51, Section 7], [40], [34] and [17].

Definition 1.3.7 Let P be as in (1.4). Then P is said to be combinatorial aspher-

ical (CA) if P has a trivialiser set Y such that every element of Y contains exactly

two discs. Also, a monoid M is said to be combinatorial aspherical if it can be defined

by a (CA) presentation.

In Chapter 4 we will use that all finite cyclic monoids are (CA) (see Lemma 4.2.13).

See [51, Section 7] for further discussion on the combinatorial asphericity.

For any picture P over P and for any S ∈ s, the exponent sum of S in P is the

number of positive discs labelled by S, minus the number of negative discs labelled by

S.

Definition 1.3.8 Let P be as in (1.4), and let n be a non-negative integer. Then P is

said to be n-Cockcroft if expS(P) ≡ 0 (mod n), (where congruence (mod 0) is taken

to be equality) for all S ∈ s and for all spherical pictures P over P. A monoid M is

said to be n-Cockcroft if it admits an n-Cockcroft presentation.

Remark 1.3.9 To verify that the n-Cockcroft property holds, it is enough to check for

pictures P ∈ Y, where Y is a trivialiser of D(P).

The 0-Cockcroft property is usually just called Cockcroft.

In practice, we usually take n to be 0 or a prime p.

Example 1.3.2 (continued) By [60], trivialiser of D(P) contains the single picture

P depicted in 1.2.(i). Since expR(P) = expS(P) = expT (P) = 1 − 1 = 0, then P is
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Cockcroft. ♦

Example 1.3.5 (continued) Since expR(P) = 1 − 3 = −2, expS(P) = 2 − 2 = 0,

expT (P) = 1− 1 = 0 then P is 2-Cockcroft. ♦

Note that

Aspherical⇒ CA⇒ Cockcroft⇒ n-Cockcroft (n ∈ Z+).

1.3.4 Efficiency of monoid presentations

Let M be a monoid with the presentation P , as in (1.4). As with group presentations

we define the Euler characteristic of P by

χ(P) = 1− |y|+ |s|.

Let

δ(M) = 1− rkZ(H1(M)) + d(H2(M)),

where rkZ( ) denotes the Z-rank of the torsion-free part and d( ) means the minimal

number of generators. Then we have

Theorem 1.3.10 (Pride-unpublished)

χ(P) > δ(M).

Then we define

χ(M) = min{χ(P) : P a finite presentation for M}.

We should remark that some authors consider, just as with the group presentations,

−|y|+ |s|,

and call this the deficiency of the presentation P , denote by def(P). The deficiency of

a monoid M , denote by def(M), is then taken to be the minimum deficiencies of all

finite presentations of M . Clearly

1 + def(P) = χ(P),

1 + def(M) = χ(M).
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Definition 1.3.11 Let M be a monoid.

i) A presentation P0 for M is called minimal if

χ(P0) 6 χ(P),

for all presentations P of M .

ii) A finite presentation P is called efficient if

χ(P) = δ(M).

iii) M is called efficient if

χ(M) = δ(M).

Theorem 1.3.12 (Pride-unpublished) Let P be as in (1.4). Then P is efficient if

and only if it is p-Cockcroft for some prime p.

As a consequence of the above theorem, we have

Corollary 1.3.13 Let P be as in (1.4). If P is Cockcroft then P is efficient.

Let ψ be a ring homomorphism from ZM into the ring of all k × k martices over a

comutative ring A with 1, for some k > 1, and suppose ψ(1) = Ik×k.

Theorem 1.3.14 (Pride-unpublished) Let Y be a trivializer of D(P). If

either (a) ψ(λP,S) = 0 for all P ∈ Y, S ∈ s,

or (b) ψ(ηP,S) = 0 for all P ∈ Y, S ∈ s,

then P is minimal.

The above theorem can be restated as follows.

Theorem 1.3.15 If there is a ring homomorphism ψ as above such that either I
(l)
2 (P)

or I
(r)
2 (P) is contained in the kernel of ψ, then P is minimal.

One of our main results (see Theorem 5.3.1) concern minimal but inefficient monoid

presentations.

Some other examples of efficient and inefficient monoid presentation can be found,

for example, in [2].
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Chapter 2

The p-Cockcroft property of central

extensions of groups

2.1 Introduction

A presentation for an arbitrary group extension is well-known, see for instance [6].

Also a generalization of the work in [19] on central extensions is presented in [6]. As an

application of this we discuss necessary and sufficient conditions for the presentation

of the central extension to be p-Cockcroft, where p is a prime or 0. Finally, we present

some examples of this result.

2.2 Central extensions

Let Q be a group with the presentation PQ = 〈a ; r〉, and let K be a cyclic group of

order m generated by x (m = 0 if x has infinite order). Any central extension of K by

Q will have a presentation of the form

P =
〈
a, x ; Rx−kR (R ∈ r), xm, [a, x] (a ∈ a)

〉
, (2.1)

where 0 6 kR < m, (kR ∈ Z if m = 0).

However, not every presentation of this form defines an extension of K by Q because

the order of x may not be m in G ∼= G(P). But, by [19] (see also [6, Corollary 7.2]), if
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we know a generating set, say Y, of π2(PQ) then we can give necessary and sufficient

conditions for x to have order m (Theorem 2.2.1 below).

Let Q (Q ∈ Y) have discs ∆1, ∆2, · · · , ∆t labelled Rε1
1 , R

ε2
2 , · · · , Rεt

t respectively

(Ri ∈ r, εi = ±1, 1 6 i 6 t). Then let us choose a spray

γ1, γ2, · · · , γt (2.2)

for Q, and suppose the label on γi is W∆i
which is a word on a (1 6 i 6 t). This can

be illustrated as in the following figure.

��
��

(εi = 1)

�
�
�
�
�
�
�
�
��

W∆i

∆i
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aaa
?
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��
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(εi = −1)

A
A
A
A
A
A
A
A
AAK

W∆i

∆i �
�
���

�
��

J
J
JJ

���
?
Ri

γi γi

Let

β(Q) =
t∑
i=1

εikRi .

Theorem 2.2.1 ([6], [19]) Let G be the group defined by the presentation (2.1). Then

the order of x is m in G if and only if

β(Q) ≡ 0 (mod m) (Q ∈ Y). (2.3)

For Q ∈ Y as above and a ∈ a, we let

αa(Q) =
t∑
i=1

εi expa(W∆i
)kRi .
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2.3 The p-Cockcroft property for the central exten-

sions

2.3.1 The general theorem

Theorem 2.3.1 Let p be a prime or 0, and let P be a presentation as in (2.1) such

that the condition (2.3) holds. Then P is p-Cockcroft if and only if

(i) m ≡ 0 (mod p),

(ii) expa(R) ≡ 0 (mod p), for all a ∈ a, R ∈ r,

(iii) PQ is p-Cockcroft,

(iv) αa(Q) ≡ 0 (mod p), for all a ∈ a, Q ∈ Y,

(v) β(Q) ≡ 0 (mod m.p), for all Q ∈ Y.

2.3.2 The generating pictures of π2(P)

Let P be as in (2.1) such that the condition (2.3) holds. Now, by using [6], we can give

a set of generating pictures over P as follows.

(I) The generating picture of the presentation PK = 〈x ; xm〉 which is illustrated

by

��
��

��
��

...
...

?

xm

K

Note that if m = 0 then the above picture simply becomes the empty picture.

(II) For each a ∈ a, we have a spherical picture
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Note also that if m = 0 then again the above picture becomes the empty picture.

(III) For each R ∈ r, we have a spherical picture as in (a) (or (b) if kR = 0) below.
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(IV ) For each Q ∈ Y, a picture Q̂ defined as follows.

For the picture Q, we have the spray (2.2). Then, for each disc ∆i labelled Rεi
i (1 6

i 6 t), we replace the spray line (transverse path) γi by a picture consisting of discs

labelled [a, x] (a ∈ a) and with boundary label W∆i
xεikRiW−1

∆i
x−εikRi . This can be

illustrated as in Figure 2.1. This gives a picture Q∗ with the boundary label

W (Q) = (xε1kR1xε2kR2 · · ·xεtkRt )−1

= x−β(Q) by the definition of β(Q).
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Figure 2.1:

We then cap off Q∗ with a picture consisting of
β(Q)

m
times xm-discs (where

β(Q)

m
is taken to be 0 if m = 0), positively oriented if β(Q) > 0, negatively oriented if

β(Q) < 0, to obtain a spherical picture Q̂. In doing this it may be necessary to join

up loose oppositely oriented x-arcs. This can be illustrated as in the following figure

(see also Example 2.3.2 below).
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Example 2.3.2 Let Q be the group defined by the presentation

PQ =
〈
a, b ; a3, aba−1b−1

〉
,

and let K be the cyclic group of order 3 generated by x. Consider the presentation

P =
〈
a, b, x ; a3x−1, aba−1b−1x−2, x3, [a, x], [b, x]

〉
.

By [3], π2(PQ) is generated by the pictures Q1 and Q2 depicted in Figure 2.2. We
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Figure 2.2:

have β(Q1) = 0, β(Q2) = 6. So (2.3) holds. Hence, by Theorem 2.2.1, the group G

defined by P is a central extension of K by Q. We get the pictures Q∗1, Q∗2 as in Figure

2.3. Then we obtain Q̂1, Q̂2 as in Figure 2.4. ♦

The proof of the following theorem can be found in [6, Theorem 6.4].
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Theorem 2.3.3 Let P be as in (2.1) such that the condition (2.3) holds. Then π2(P)

is generated by the pictures

K, Ka (a ∈ a), Dx,R (R ∈ r) and Q̂ (Q ∈ Y).

2.3.3 The proof of Theorem 2.3.1

Let CR, Ca denote the relators Rx−kR (R ∈ r), [a, x] (a ∈ a) respectively.

First assume that m 6= 0.

Let us consider the picture K. It is clear that expxm(K) = 1 − 1 = 0. Also, let us

consider a picture Ka (a ∈ a). Clearly expxm(Ka) = 1 − 1 = 0, and it is easy to see

that

expCa(Ka) = expx(x
m) = m,

so we must have m ≡ 0 (mod p). Hence the condition (i) must hold.

Consider a picture Dx,R (R ∈ r). It is clear that

expCR(Dx,R) = 1− 1 = 0.

Also it is easy to see that

expCa(Dx,R) = expa(R),
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for all a ∈ a. Thus the condition (ii) must hold.

Now consider a picture Q̂ (Q ∈ Y). We must have expCR(Q̂) ≡ 0 (mod p). But

expCR(Q̂) = expR(Q),

so we must have expR(Q) ≡ 0 (mod p), that is, PQ must be p-Cockcroft. This gives

the condition (iii). Also, for a fixed a ∈ a, it is easy to see that

expCa(Q̂) = αa(Q).

So we must have αa(Q) ≡ 0 (mod p), which gives the condition (iv). Finally, we have

that

expxm(Q̂) =
β(Q)

m
.

Then we must have β(Q) ≡ 0 (mod m.p). So the condition (v) must hold.

Suppose that m = 0.
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Then the five conditions (i)-(v) reduce to the three conditions

(ii) expa(R) ≡ 0 (mod p), for all a ∈ a, R ∈ r,

(iii) PQ is p-Cockcroft,

(iv) αa(Q) ≡ 0 (mod p), for all a ∈ a, Q ∈ Y,

since the conditions (i) and (v) automatically hold. Because the pictures K and Ka

are trivial, so impose no restrictions, and there are no xm discs, then the above proof

will carry over.

2.4 Some examples

Example 2.4.1 Let Q be the (k, l, n)-triangle group with the presentation

PQ =
〈
a, b ; ak, bl, (ab)n

〉
,

where k, l, n ∈ Z+ and

1

k
+

1

l
+

1

n
6 1,

and let K be a cyclic group of order m generated by x (m is taken to be 0 if x has

infinite order). Consider the presentation

P =
〈
a, b, x ; akx−r, blx−s, (ab)nx−t, xm, Ca, Cb

〉
, (2.4)

where 0 6 r, s, t < m (or r, s, t ∈ Z, if m = 0) and, as in the proof of Theorem 2.3.1,

Ca := [a, x] and Cb := [b, x].

By the weight test (see [11], [24]), PQ is CA (and then Cockcroft). We can give a set

of generating pictures of π2(PQ), as in Figure 2.5. We have β(Q1) = 0, β(Q2) = 0 and

β(Q3) = 0. So (2.3) holds. Hence, by Theorem 2.2.1, the group G defined by P is a

central extension of K by Q.
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We also have

expa(a
k) = k, expb(b

l) = l,

expa((ab)
n) = n, expb((ab)

n) = n.

Moreover, by the definition, we get

αa(Q1) = r, αb(Q1) = 0,

αa(Q2) = 0, αb(Q2) = s,

αa(Q3) = t, αb(Q3) = t.

Also, for any prime p, we always have

β(Qi) ≡ 0 (mod m.p) (i = 1, 2, 3).

♦

Thus, we get the following result for the above example, as a consequence of The-

orems 2.3.1 and 1.2.15.

Corollary 2.4.2 Let p be a prime. Then the presentation P, as in (2.4), is p-Cockcroft

if and only if

m ≡ 0 (mod p),

k ≡ 0 (mod p), l ≡ 0 (mod p), n ≡ 0 (mod p),

r ≡ 0 (mod p), s ≡ 0 (mod p), t ≡ 0 (mod p).
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Hence P is efficient if and only if

hcf(m, k, l, n, r, s, t) 6= 1.

Example 2.4.3 Let Q be the group Zk ⊕ Zl (k, l ∈ Z+) with the presentation

PQ =
〈
a, b ; ak, bl, [a, b]

〉
,

and let K be a finite cyclic group of order m generated by x. Let us consider the

presentation

P =
〈
a, b, x ; akx−r, blx−s, [a, b]x−t, xm, Ca, Cb

〉
, (2.5)

where 0 6 r, s, t < m and again, as in the proof of Theorem 2.3.1,

Ca := [a, x] and Cb := [b, x].

We can give a set of generating pictures of π2(PQ), as in Figure 2.6. We have β(Q1) =
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Q3 Q4

Figure 2.6:

0, β(Q2) = 0, β(Q3) = lt and β(Q4) = kt.

Suppose that

lt ≡ 0 (mod m) and kt ≡ 0 (mod m).
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So (2.3) holds. Then, by Theorem 2.2.1, the group G defined by P is a central extension

of K by Q.

It is clear that

expa(a
k) = k, expb(b

l) = l,

expa([a, b]) = 1− 1 = 0 expb([a, b]) = 1− 1 = 0.

Also, by the definition, we get

αa(Q1) = r, αb(Q1) = 0,

αa(Q2) = 0, αb(Q2) = s,

αa(Q3) = s, αb(Q3) = −1

2
l(l − 1)t,

αa(Q4) =
1

2
k(k − 1)t, αb(Q3) = r.

♦

Therefore, we get the following result for the above example, as a consequence of

Theorems 2.3.1 and 1.2.15.

Corollary 2.4.4 Let p be a prime. Then the presentation P, as in (2.5), is p-Cockcroft

if and only if

m ≡ 0 (mod p),

k ≡ 0 (mod p), r ≡ 0 (mod p), kt ≡ 0 (mod m.p), 1
2
k(k − 1)t ≡ 0 (mod p),

l ≡ 0 (mod p), s ≡ 0 (mod p), lt ≡ 0 (mod m.p), −1
2
l(l − 1)t ≡ 0 (mod p).

Thus P is efficient if and only if

hcf(m, k, l, r, s,
1

2
k(k − 1)t,

1

2
l(l − 1)t,

1

m
kt,

1

m
lt) 6= 1.
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Chapter 3

The efficiency of standard wreath

products of groups

3.1 Some background

Let ξp denote the set of all finite p-groups (p a prime) which have efficient presentations.

In 1970, Johnson [36] showed that ξp is closed under direct products and after that,

for p odd, ξp is closed under standard wreath products. Also in 1973, Wamsley [58]

showed that ξp is closed under general wreath products.

Let ξ be the set of all finite groups which have efficient presentations. In this chapter

we will give sufficient conditions for the standard wreath product of any two groups

which belong to ξ to be efficient.

Definition 3.1.1 If there are given

a-) a group A,

b-) a group K,

c-) a homomorphisim θ of A into the automorphisim group of K

θ : A −→ Aut(K), a 7−→ θa

for all a ∈ A,
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then the semi-direct product G = K oθ A of K by A is defined as follows.

The elements of G are all ordered pairs (a, k) (a ∈ A, k ∈ K) and multiplication is

given by

(a, k)(a′, k′) = (aa′, (kθa′)k
′).

Similiar definitions of a semi-direct product can be found in [7] or [54]. We remark

that semi-direct products of monoids will be discussed (in detail) in Chapter 4, Section

4.3.

The proof of the following Lemma can be found in [35, Proposition 10.1, Corollary

10.1].

Lemma 3.1.2 Suppose that PK = 〈y; s〉 and PA = 〈x; r〉 are presentations for the

groups K and A respectively under the maps

y 7−→ ky (y ∈ y), x 7−→ ax (x ∈ x).

Then we have a presentation for G = K oθ A

P = 〈y, x ; s, r, t〉

where t = {yxλ−1
yx x

−1|y ∈ y, x ∈ x}, and λyx is a word on y representing the element

(ky)θax of K (a ∈ A, k ∈ K, x ∈ x, y ∈ y).

Now let us define the standard wreath product by using Definition 3.1.1.

Definition 3.1.3 Let A and B be finite groups with A = {a1, a2, · · · , ag}, say. Let x

be any element of A. Then,

a1x, a2x, · · · , agx

is a permutation of a1, a2, · · · , ag. So we can write a1x, a2x, · · · , agx as aσx(1), aσx(2), · · · , aσx(g)

where σx is a permutation of 1, 2, · · · , g.

Let K be the direct product of the number of |A| copies of B, that is,

K = B|A| = Bg = B ×B × · · · ×B︸ ︷︷ ︸
(g times)

,
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and let (ba1 , ba2 , · · · , bag) be a typical element of K. We have a homomorphism

θ : A −→ Aut(K), x 7−→ θx

where

(ba1 , ba2 , · · · , bag)θx = (baσx(1)
, baσx(2)

, · · · , baσx(g)
).

The split extension K oθ A is called the standard wreath product of B by A, denoted

B o A.

We should note that some authors, for instance Karpilovsky in [38], use the nota-

tion A oB instead of B o A. Here we use the notation as in [54].

We also need the following well known results.

Proposition 3.1.4 (Schur 1904) Let B be a finite group. Then

(i) H2(B) is a finite group, whose elements have order dividing the order of B.

(ii) H2(B) = 1 if B is cyclic.

Definition 3.1.5 1) Given an abelian group A, we denote by A#A the factor group

of A ⊗ A by the subgroup generated by the elements of the form a ⊗ b + b ⊗ a,

(a, b ∈ A).

2) In any group K, an element of order 2 is called an “involution”.

Theorem 3.1.6 (Blackburn 1972) Let m denote the number of involutions in the

group A. Then H2(B oA) is the direct sum of H2(B), H2(A), (1/2)(|A|−m− 1) copies

of H1(B)⊗H1(B) and m copies of H1(B) #H1(B).

Lemma 3.1.7 Let B be a finite group, let

H1(B) ∼=
t⊕
i=1

Zni ,
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and let s be the number of even ni, 1 6 i 6 t. Then,

H1(B) #H1(B) ∼=
⊕

16i<j6t

Z(ni,nj) ⊕ Z(s)
2 ,

where Z(s)
2 is a direct sum of s copies of Z2.

Proofs of Proposition 3.1.4, Theorem 3.1.6 and Lemma 3.1.7 can be found in [38].

Lemma 3.1.8 (Kunneth Formula) Let A and B be any two groups and let G =

A×B. Then,

H2(G) = H2(A)⊕H2(B)⊕H1(A)⊗H1(B).

Definition 3.1.9 Let A be a finite abelian group. Then we define,

t(A) =

 first torsion number if A 6= 0

0 if A = 0
.

Lemma 3.1.10 Let A and B be finite abelian groups. If (t(A) , t(B)) 6= 1 then

d(A⊕B) = d(A) + d(B).

Proof. Suppose that (t(A) , t(B)) 6= 1.

First of all, if one of t(A) or t(B) is 0, say t(A) then by Definition 3.1.9, A = 0.

Then, basically we have that d(B) = d(B).

Now suppose both t(A) and t(B) are non-zero, and let

A = Zm1 ⊕ Zm2 ⊕ · · · ⊕ Zmk ,

where mi | mi+1, 1 6 i 6 k − 1. Then t(A) = m1. Similarly, let

B = Zn1 ⊕ Zn2 ⊕ · · · ⊕ Znl ,

where nj | nj+1, 1 6 j 6 l − 1 and t(B) = n1. Then,

A⊕B = Zm1 ⊕ Zm2 ⊕ · · · ⊕ Zmk ⊕ Zn1 ⊕ Zn2 ⊕ · · · ⊕ Znl .
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Now, let p be a prime with p | t(A) and p | t(B). Then

p | m1, p | m2, · · · , p | mk, p | n1, p | n2, · · · , p | nl.

So there are epimorphisms

φi : Zmi � Zp and ψj : Znj � Zp,

where 1 6 i 6 k and 1 6 j 6 l. Then we get induced epimorphisms

φ =
⊕

16i6k

φi : Zm1 ⊕ Zm2 ⊕ · · · ⊕ Zmk � Z(k)
p

and

ψ =
⊕

16j6l

ψj : Zn1 ⊕ Zn2 ⊕ · · · ⊕ Znl � Z(l)
p .

Then

φ⊕ ψ : Zm1 ⊕ · · · ⊕ Zmk ⊕ Zn1 ⊕ · · · ⊕ Znl � Z(k+l)
p .

Now since Z(k)
p is a vector space over Zp [54, Lemma 6.2], and since any two bases of

a vector space have the same cardinality [33, Theorem 4.2.7], that is, the dimension

of Z(k)
p , then we have that Z(k)

p cannot be generated by less than k elements. In other

words, d(Z(k)
p ) = k. Thus, by the fact that the minimal number of generators of a group

is greater than or equal to the minimal number of generators of any homomorphic image

of that group, we have that

d(A) > k.

On the other hand, A can be generated by k elements which are

(1, 0, 0, · · · , 0), (0, 1, 0, · · · , 0), · · · , (0, 0, 0, · · · , 1).

So, d(A) 6 k, then d(A) = k. Similarly, d(B) = l and d(A⊕B) = k + l. �

Remark 3.1.11 Clearly we can generalize this lemma for more than two abelian groups,

that is, if Ai (1 6 i 6 n) are abelian groups and (t(A1), t(A2), · · · , t(An)) 6= 1 then

d(A1 ⊕ A2 ⊕ · · · ⊕ An) = d(A1) + d(A2) + · · ·+ d(An).
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3.2 The main theorem

Throught this section A, B will be finite groups satisfying the following conditions.

(i) A, B have efficient presentations PA = 〈x ; r〉 and PB = 〈y ; s〉 respectively on

g, n (g, n ∈ N) generators where n = d(B),

(ii) d(B) = d(H1(B)),

(iii) either the orders ofA, H1(B) are even and also t(H2(A)), t(H2(B)) and t(H1(B))

are even or the order of A is odd and there exists an odd prime p dividing

t(H2(A)),

t(H2(B)) and t(H1(B)), where t is defined as in Definition 3.1.9.

Theorem 3.2.1 (Main Theorem) Let G = B o A. Then G has an efficient presen-

tation.

The proof of the following remark can be found at the end of this section as a

lemma.

Remark 3.2.2 Suppose g = d(A). If (t(H1(A)), t(H1(B))) 6= 1 and d(H1(A)) = d(A)

then d(G) = g + n.

The proof of Theorem 3.2.1 will proceed by the following steps.

3.2.1 Calculation of δ(B o A) and d(H2(B o A))

In this part of the proof, we will calculate

δ(G) = 1 + rkZ(H1(G)) + d(H2(G)).

Now since G is a finite group then rkZ(H1(G)) is trivial, so we will just calculate

δ(G) = 1 + d(H2(G)).
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Recall that we had a formula to calculate H2(G) by Theorem 3.1.6, that is,

H2(G) = H2(B o A)

= H2(B)⊕H2(A)⊕ (H1(B)⊗H1(B))
1
2

(|A|−m−1) ⊕ (H1(B) #H1(B))m,

(3.1)

where m denotes the number of involutions in the group A.

Let us write

H1(B) = Zv1 ⊕ Zv2 ⊕ · · · ⊕ Zvn , vi | vi+1, 1 6 i 6 n− 1. (3.2)

By (ii), d(H1(B)) = d(B) = n.

At first, let us calculate the “⊗” part in (3.1).

H1(B)⊗H1(B) = (Zv1 ⊗ Zv1)⊕ (Zv1 ⊗ Zv2)⊕ · · · · · · ⊕ (Zv1 ⊗ Zvn)⊕

(Zv2 ⊗ Zv1)⊕ (Zv2 ⊗ Zv2)⊕ · · · · · · ⊕ (Zv2 ⊗ Zvn)⊕

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

(Zvn ⊗ Zv1)⊕ (Zvn ⊗ Zv2)⊕ · · · · · · ⊕ (Zvn ⊗ Zvn)⊕

= Zv1 ⊕ Z(v1,v2) ⊕ · · · · · · ⊕ Z(v1,vn) ⊕

Z(v2,v1) ⊕ Zv2 ⊕ · · · · · · ⊕ Z(v2,vn) ⊕

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Z(vn,v1) ⊕ Z(vn,v2) ⊕ · · · · · · ⊕ Zvn .

Since v1 | v2 | · · · | vn, we have

(v1, v2) = (v1, v3) = · · · = (v1, vn) = v1

(v2, v3) = (v2, v4) = · · · = (v2, vn) = v2

...
...

...
...

...
...

...
...

...

...
...

...
...

...
...

...
...

...

(vn−1, vn) = vn−1.

So the sum becomes

= Zv1 ⊕ Zv1 ⊕ · · · ⊕ Zv1 ⊕
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Zv1 ⊕ Zv2 ⊕ · · · ⊕ Zv2 ⊕

Zv1 ⊕ Zv2 ⊕ Zv3 ⊕ · · · ⊕ Zv3 ⊕

· · · · · · · · · · · · · · · · · · · · · · · ·

Zv1 ⊕ Zv2 ⊕ · · · ⊕ Zvn .

Then t(H1(B)⊗H1(B)) = v1. Hence by Lemma 3.1.10,

d(H1(B)⊗H1(B))
1
2

(|A|−m−1) =
1

2
(|A| −m− 1)d(B)2. (3.3)

Case 1 : |A| is even

In this case we must calculate the “#” part in (3.1), as well.

Suppose that t(H1(B)) is even. Then it implies that each term in the decomposition

(3.2) of H1(B) is even. Now let us use the formula which is given in Lemma 3.1.7. So,

H1(B)#H1(B) = Z(v1,v2) ⊕ Z(v1,v3) ⊕ · · · · · · ⊕ Z(v1,vn) ⊕

Z(v2,v3) ⊕ Z(v2,v4) ⊕ · · · · · · ⊕ Z(v2,vn) ⊕

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Z(vn−2,vn−1) ⊕ Z(vn−2,vn) ⊕ Z(vn−1,vn) ⊕ Z2
(n).

(Since every term is even in H1(B) then we take n to be the power of Z2 in the above

formula.) And by using the fact v1 | v2 | · · · | vn, the sum will become

= Zv1 ⊕ Zv1 ⊕ · · · · · · ⊕ Zv1 ⊕

Zv2 ⊕ Zv2 ⊕ · · · · · · ⊕ Zv2 ⊕

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

Zvn−2 ⊕ Zvn−2 ⊕ Zvn−1 ⊕ Z2
(n).

And so t(H1(B)#H1(B)) = 2. Then by Lemma 3.1.10, we have that

d(H1(B) #H1(B))m = m(
(n− 1)[(n− 1) + 1]

2 !
+ n)
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= m(
n2 + n

2
)

= m(
d(B)2 + d(B)

2
).

Therefore (again by Lemma 3.1.10, and using assumption (iii) )

d(H2(G)) = d(H2(A)) + d(H2(B)) +
1

2
(|A| −m− 1) d(B)2 +

1

2
m (d(B)2 + d(B)),

and after some rearrangements, we get

d(H2(G)) = d(H2(A)) + d(H2(B)) +
1

2
d(B)2(|A| − 1 +

m

d(B)
).

Therefore we have

δ(G) = d(H2(A)) + d(H2(B)) + 1 +
1

2
d(B)2(|A| − 1 +

m

d(B)
). (3.4)

Case 2 : |A| is odd

By assumption (iii), there exists an odd prime p such that

p | t(H2(A)) , p | t(H2(B)) , p | t(H1(B)).

In this case, since the order of A is odd, we cannot have any involutions in group A,

so the value m in the third and final terms of (3.1) becomes zero. Thus we will just

need to calculate the “⊗” part in (3.1). Now by using Lemma 3.1.10, we have

d(H1(B)⊗H1(B))
1
2

(|A|−1) =
1

2
(|A| − 1) d(B)2,

following the same calculation as in (3.3). Then by using assumption (iii) and Lemma

3.1.10, we get

d(H2(G)) = d(H2(A)) + d(H2(B)) +
1

2
(|A| − 1) d(B)2.

Therefore we have

δ(G) = d(H2(A)) + d(H2(B)) + 1 +
1

2
d(B)2(|A| − 1). (3.5)
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3.2.2 To obtain an efficient presentation for G = B o A

To get an efficient presentation for G = B o A, the following process can be followed:

• For each a ∈ A take a copy
〈
y(a) ; s(a)

〉
of PB,

• Choose an ordering a1 < a2 < · · · < an of the elements of A where a1 = 1,

• Let {ax : x ∈ x} be a generating set for A corresponding to the presentation

PA = 〈x ; r〉,

• Let {by : y ∈ y} be a generating set for B corresponding to the presentation

PB = 〈y ; s〉.

Lemma 3.2.3 A presentation of G = B o A is given by

P0 =
〈
y(a) (a ∈ A), x ; s(a) (a ∈ A), r, y(a)z(a′) = z(a′)y(a) (a, a′ ∈ A, a < a′, y, z ∈ y),

x−1y(a)x = y(aax) (a ∈ A, y ∈ y, x ∈ x)
〉
.

Proof. By Definition 3.1.3, K is the direct product of |A| copies of B so that a

presentation of K can be written

PK =
〈
y(a) (a ∈ A) ; s(a) (a ∈ A), [y(a), z(a′)] (a, a′ ∈ A, a < a′, y, z ∈ y)

〉
.

And also by the same Definition, B o A is the split extension K oθ A, so as we said in

Lemma 3.1.2, a presentation of K oθ A is given by

P ′ =
〈
y(a) (a ∈ A), x ; s(a) (a ∈ A), r, [y(a), z(a′)] (a, a′ ∈ A, a < a′, y, z ∈ y), t

〉
.

Here t = {y(a)xy(aax)−1
x−1 | y ∈ y, x ∈ x}, where for any c ∈ A, y(c) represents the

element of B ×B × · · · ×B︸ ︷︷ ︸
|A| times

which has 1 in all positions except position c and the value

in position c is by where by ∈ B. Then P ′ is the same presentation as P0.

Therefore P0 actually is a presentation of B o A, as required. �

We will identify G with the group defined by P0.
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Lemma 3.2.4 If W is a word on x, say W = xε11 x
ε2
2 · · ·xεnn , then

W−1y(a)W = y(aa
ε1
x1
a
ε2
x2
···aεnxn )

in G.

Proof. We will use induction on L(W ).

i) Let L(W ) = 1. Then for x1 ∈ x, y ∈ y and a ∈ A we have

x−1
1 y(aa−1

x1
)x1 = y((aax1 )a−1

x1
)

in G. So

x1y
(a)x−1

1 = y(aa−1
x1

)

in G. Hence, for ε1 = ±1 we have

x−ε11 y(a)xε11 = y(aa
ε1
x1

)

in G.

ii) Assume that the result holds for L(W ) = n− 1. Now suppose that L(W ) = n.

Then let W = xε11 x
ε2
2 · · ·xεnn (xi ∈ x, εi = ±1 for 1 6 i 6 n). By induction hypothesis,

we know that

(xε11 x
ε2
2 · · ·x

εn−1

n−1 )
−1
y(a)xε11 x

ε2
2 · · ·x

εn−1

n−1 = y(aa
ε1
x1
a
ε2
x2
···aεn−1

xn−1
)

in G. Now let us conjugate it by xεnn . Then we get

x−εnn x
−εn−1

n−1 · · ·x−ε11 y(a)xε11 · · ·x
εn−1

n−1 x
εn
n = x−εnn y(aa

ε1
x1
a
ε2
x2
···aεn−1

xn−1
)xεnn ,

and by the same process as in the first step, we have

x−εnn y(aa
ε1
x1
a
ε2
x2
···aεn−1

xn−1
)xεnn = y(aa

ε1
x1
···aεn−1

xn−1
aεnxn ).

Therefore we have

W−1y(a)W = y(aa
ε1
x1
···aεn−1

xn−1
aεnxn )

in G, as required. �
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• For each a ∈ A, choose a word Wa on x representing a. (That is, if W =

xε11 x
ε2
2 · · ·xεnn then the product aε1x1

aε2x2
· · · aεnxn in A is equal to a.) When a = 1,

choose Wa to be the empty word.

We now perform a sequence of Tietze transformations on P0.

STEP 1 : Add the relators y(a) = Wa
−1 y(1) Wa (a ∈ A, a 6= 1, y ∈ y) to P0 since

these are consequences of the relators of P0 by Lemma 3.2.4. Then we obtain a new

presentation

P1 =
〈
y(a) (a ∈ A), x ; s(a) (a ∈ A), r, y(a)z(a′) = z(a′)y(a) (a, a′ ∈ A, a < a′, y, z ∈ y),

x−1y(a)x = y(aax) (a ∈ A, x ∈ x, y ∈ y), y(a) = Wa
−1y(1)Wa (a ∈ A, a 6= 1, y ∈ y)

〉
.

STEP 2 : Delete the relators s(a) where a 6= 1 since these are consequence of the

relators s(1), x−1y(a)x = y(aax) (a ∈ A, x ∈ x, y ∈ y) and y(a) = Wa
−1 y(1)Wa (a ∈

A, a 6= 1, y ∈ y). So after deletion we have just the relators s(1) in the new presentation.

We can show it as follows.

We have the relators

y(a) = Wa
−1 y(1)Wa (a 6= 1),

in P1. Now let S(1) ∈ s(1), so the letters in S(1) belong to y(1) and similarly let for

a 6= 1, S(a) ∈ s(a), so the letters in S(a) belong to y(a). And by a conclusion of Lemma

3.2.4, we get

S(a) = Wa
−1 S(1)Wa.

Here, since s(1) is a relator in P1 then S(1) = 1 in G and then the above equation

implies that S(a) = 1 in G. Therefore we can delete s(a) where a 6= 1 and then we have

the presentation

P2 =
〈
y(a) (a ∈ A), x ; s(1), r, y(a)z(a′) = z(a′)y(a) (a, a′ ∈ A, a < a′, y, z ∈ y),

x−1y(a)x = y(aax) (a ∈ A, x ∈ x, y ∈ y), y(a) = Wa
−1y(1)Wa (a ∈ A, a 6= 1, y ∈ y)

〉
.
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STEP 3 : Delete the relations x−1 y(a) x = y(aax) (a ∈ A, x ∈ x, y ∈ y) from P2.

We must show that these are the consequence of the other relators of P2. It can be

shown as follows.

Take Wa
−1 y(1) Wa = y(a) and conjugate it by x ∈ x. Then we get,

x−1Wa
−1 y(1)Wa x = x−1 y(a) x.

But Wax represents aax in A, so Wax = Waax in A. (That is, Wax and Waax are equal

modulo the relators r.)

Hence, modulo the relators r we can replace the above by

Waax
−1 y(1)Waax = x−1 y(a) x,

and we thus obtain

y(aax) = x−1 y(a) x.

Therefore we have the presentation

P3 =
〈
y(a) (a ∈ A), x ; s(1), r, y(a)z(a′) = z(a′)y(a) (a, a′ ∈ A, a < a′, y, z ∈ y) ,

y(a) = Wa
−1y(1)Wa (a ∈ A, a 6= 1, y ∈ y)

〉
.

STEP 4 : Delete the generators y(a) where a 6= 1 and replace all y(a), z(a′) by

Wa
−1 y(1)Wa and Wa′

−1 z(1) Wa′ (a, a′ ∈ A and a, a′ 6= 1 y, z ∈ y(a)) in

y(a) z(a′) = z(a′) y(a).

After deletion and replacement we have just the generators y(1). Then we have the

presentation

P4 =
〈
y(1), x ; s(1), r, [W−1

a y(1)Wa , Wa′
−1 z(1)Wa′ ] (a, a′ ∈ A, a < a′, y, z ∈ y)

〉
.

STEP 5 : Delete the relators of the form [W−1
a y(1) Wa , Wa′

−1 z(1)Wa′ ] (a, a′ ∈

A, 1 < a < a′, y , z ∈ y) since these are consequence of the relators of the form

[y(1) , Wa′
−1 z(1)Wa′ ] (a′ ∈ A, a′ 6= 1, y, z ∈ y) and r. We can show it as follows.
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For any a, a′ ∈ A where 1 < a < a′, take a relator

[Wa
−1 y(1)Wa , Wa′

−1 z(1)Wa′ ].

Then conjugate it by Wa, we get

[y(1) , WaW
−1
a′ z

(1)Wa′W
−1
a ].

This is equal to some relator which is of the form

[y(1) , Wa′′
−1 z(1) Wa′′ ],

in presentation P4, since Wa′W
−1
a = Wa′′ in A, where a′′ 6= 1. Thus we have the

presentation

P5 =
〈
y(1), x ; s(1), r, [y(1) , Wa

−1 z(1)Wa] (a ∈ A, a 6= 1, y , z ∈ y)
〉
.

Note that, from now on, we will omit the superscripts (1) on relators in our pre-

sentation, so that P5 becomes

P5 =
〈
y, x ; s, r, [y , Wa

−1 z Wa] (a ∈ A, a 6= 1, y, z ∈ y)
〉
.

Now we will apply some reductions on the [y , Wa
−1 z Wa] (a ∈ A, a 6= 1, y , z ∈ y)

relators from P5. Note that the number of these relators is (|A| − 1)|y|2.

STEP 6 : The set A\{1} can be divided into singletons {a} (a ∈ A, a an

involution) and pairs {a, a−1} (a not an involution). Let A+ be a choice of one

element from each pair {a, a−1}. (Note that |A+| = 1
2
(|A| − 1 −m).) Let Inv be the

set of the involutions in the group A. Now let us delete the commutator relators which

involve elements in the set A\({1} ∪ A+ ∪ Inv}), since these are consequences of the

relators which involve elements in the set A+ ∪ Inv. It can be done as follows.

Let a ∈ A\({1} ∪ A+ ∪ Inv}). Let us take a relator [y , W−1
a z Wa] (y, z ∈ y), and

let us conjugate it by Wa. (Recall that Wa is a word on x representing a.) Then we

get

[Wa yW
−1
a , z].
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The inverse of it is

[z , Wa yW
−1
a ],

which can be written as

[z , (W−1
a )

−1
yW−1

a ].

Thus, since W−1
a = Wa−1 in A, then we get

[z , (Wa−1)−1 yWa−1 ],

where a−1 ∈ A+.

After deletion, we have the presentation

P6 =
〈
y, x ; s, r, [y , W−1

a z Wa] (a ∈ A+ ∪ Inv, y, z ∈ y)
〉
.

Now, we can still apply some reductions on the relators [y , W−1
a z Wa] (a ∈

A+ ∪ Inv, y, z ∈ y). Note that, the number of these relators is

1

2
(|A| − 1 +m)|y|2.

Let us choose an ordering y1 < y2 < · · · < yn of the elements of the generating set y.

STEP 7 : Delete the relators of the form [z , W−1
a yWa] (a ∈ Inv, y, z ∈ y, y <

z) since these are consequences of the relators of the form [y , W−1
a z Wa] (a ∈ Inv, y, z ∈

y, y < z). It can be shown as follows.

Let a ∈ Inv and y, z ∈ y, where y < z. Let us take a relator [y , W−1
a z Wa], and

let us conjugate it by Wa. Then we get

[Wa yW
−1
a , z].

The inverse of it is,

[z , Wa yW
−1
a ].

But, since a ∈ Inv then we have Wa = W−1
a in A. So, we get

[z , W−1
a yWa],
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as required.

Then we have the presentation

P7 =
〈
y, x ; s, r, [y , W−1

a z Wa] (a ∈ A+, y, z ∈ y),

[y , W−1
a z Wa] (a ∈ Inv, y, z ∈ y, y 6 z)

〉
.

Now the number of relators [y , W−1
a z Wa] (a ∈ A+, y, z ∈ y) is 1

2
(|A|−1−m)|y2| and

the number of relators [y , W−1
a z Wa] (a ∈ Inv, y, z ∈ y, y 6 z) is m|y|2− |y|(|y|−1)

2
m.

So, we have

1

2
|y|2(|A| − 1 +

m

|y|
)

commutator relators in P7.

Therefore the Euler characteristic of the presentation P7 can be computed as follows.

χ(P7) = 1− (|x|+ |y|) + |r|+ |s|+ 1

2
|y|2 (|A| − 1 +

m

|y|
)

= 1− (|x|+ |y|) + 1− 1 + |r|+ |s|+ 1

2
|y|2 (|A| − 1 +

m

|y|
)

= (1− |x|+ |r|) + (1− |y|+ |s|)− 1 +
1

2
|y|2 (|A| − 1 +

m

|y|
)

= χ(PA) + χ(PB)− 1 +
1

2
|y|2 (|A| − 1 +

m

|y|
)

= δ(A) + δ(B)− 1 +
1

2
|y|2 (|A| − 1 +

m

|y|
)

( since PA and PB are efficient presentation )

= 1 + d(H2(A)) + 1 + d(H2(B))− 1 +
1

2
|y|2 (|A| − 1 +

m

|y|
)

= d(H2(A)) + d(H2(B)) + 1 +
1

2
|y|2 (|A| − 1 +

m

|y|
).

Note that, if Inv = ∅ then m = 0, so that the Euler characteristic of P7 becomes

χ(P7) = d(H2(A)) + d(H2(B)) + 1 +
1

2
(|A| − 1) |y|2.

And then, by the assumption |y| = d(B) = n and by equations (3.4), (3.5), we have

χ(P7) = δ(G).

Therefore P7 is an efficient presentation for the group G = B o A.
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Lemma 3.2.5 Suppose that g = d(A) = d(H1(A)). If (t(H1(A)), t(H1(B))) 6= 1 then

d(G) = g + n.

Proof. Now, let us take the presentation P7 for the group G. Since P7 has g + n

generators then we certainly have

d(G) 6 g + n.

So we just need to show that g + n 6 d(G). To do that, we will use the fact that

the minimal number of generators of a group is greater than or equal to the minimal

number of generators of a quotient of that group, in particular, d(G) > d(Gab). So, we

will show that d(Gab) = g + n.

Now let us choose an ordering x1 < x2 < · · · < xg of the elements of the generating

set x.

The first homology group of G can be given as follows.

Gab =
〈
y, x ; s, r, [y , W−1

a z Wa] (a ∈ A+, y, z ∈ y),

[y , W−1
a z Wa] (a ∈ Inv, y, z ∈ y, y 6 z), [y, x] (y ∈ y, x ∈ x),

[y, z] (y ∈ y, y < z), [x, x′] (x, x′ ∈ x, x < x′)〉 .

By applying deletion operations to this presentation of Gab, we have that

Gab = 〈y, x ; s, r, [y, z] (y, z ∈ y, y < z), [x, x′] (x, x′ ∈ x, x < x′),

[y, x] (y ∈ y, x ∈ x)〉

∼= Aab ⊕Bab

= H1(A)⊕H1(B).

And so, by Proposition 3.1.10 and by the assumption (t(H1(A)), t(H1(B))) 6= 1, we

have that

d(Gab) = d(H1(A)) + d(H1(B)).

Also, by the assumptions d(H1(A)) = d(A) = g and d(H1(B)) = d(B) = n, we get

that

d(Gab) = g + n,

58



as required. �

3.3 Examples and applications

Example 3.3.1 Let us take the metacyclic group

B =
〈
a, b ; a10, b2, bab−1 = a−1

〉
which has order 20. Then, by [38], H2(B) = Z2. So, we can see by a simple calculation,

the above presentation of B is efficient. After that, if we find the abelianization group

H1(B) of B and then if we apply some Tietze transformations on the presentation of

H1(B), we get

H1(B) =
〈
a, b ; a2, b2, [a, b]

〉
∼= Z2 × Z2.

So, d(H1(B)) = d(B). Then,

t(H1(B)) = 2 = t(H2(B)).

Hence by Theorem 3.2.1, if A is a finite group such that |A| is even and 2 | t(H2(A)),

and if A has an efficient presentation then BoA has an efficient presentation. Moreover,

if A has an efficient presentation on g = d(A) = d(H1(A)) generators then B o A has

an efficient presentation on d(B o A) = 2 + g generators. ♦

Example 3.3.2 Now, let

B =
〈
a, b ; a3, b3, (ab)3, (a−1b)3

〉
.

By [38], B has order 27. And again by [38],

H2(B) = Z3 × Z3.

Then,

δ(B) = 1 + d(H2(B)) = 3.
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On the other hand, the Euler characteristic of the above presentation is 1− 2 + 4 = 3.

Therefore B has an efficient presentation on 2 generators. Also, the first homology

group of B is

H1(B) =
〈
a, b ; a3, b3, (ab)3, (a−1b)3, [a, b]

〉
.

But, by applying some deletion operations to this presentation of H1(B), we have that

H1(B) =
〈
a, b ; a3, b3, [a, b]

〉
∼= Z3 × Z3.

So, d(H1(B)) = d(B). Therefore

t(H1(B)) = 3 = t(H2(B)).

Then, again by Theorem 3.2.1 and Lemma 3.2.5, if A is a finite group such that |A| is

odd and 3 | t(H2(A)), and if A has an efficient presentation then B oA has an efficient

presentation. Moreover, if A has an efficient presentation on g = d(A) = d(H1(A))

generators then B o A has an efficient presentation on d(B o A) = 2 + g generators. ♦

Lemma 3.3.3 If G is a finite p-group, then

Φ(G) = G′Gp,

where Φ(G) denotes the Frattini subgroup.

Proposition 3.3.4 (Burnside Basis Theorem) Let X be a subset of a finite p-

group G. Then X generates G if and only if the cosets {xΦ(G) : x ∈ X } generate

G/Φ(G). Every minimal set of generators for G has the same number of elements.

Proofs of Lemma 3.3.3 and Proposition 3.3.4 can be found in [35].

Now we can prove the following Proposition, by using these two above well-known

results.

Proposition 3.3.5 Let B be an arbitrary finite p-group. Then

d(B) = d(H1(B)).
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Proof. Let d(B) = n, where n ∈ Z+. Since H1(B) = B/B′ then we just need to show

that d(B/B′) = n.

By Lemma 3.3.3, we have that

Φ(B) = B′Bp ⊇ B′.

So there is a well-defined epimorphism

B/B′ −→ B/Φ(B),

and so, d(B/B′) > d(B/Φ(B)). Then by the Burnside Basis Theorem, d(B/Φ(B)) =

d(B). In other words, d(B/B′) > d(B). On the other hand, by the fact that the

minimal number of generators of a group is greater than or equal to the minimal

number of generators of a quotient of that group, then we have that d(B) > d(B/B′).

Therefore,

d(B) = d(B/B′),

as requried. �

Corollary 3.3.6 Let A, B be finite p-groups. Suppose B has an efficient presentation

on d(B) generators and A has an efficient presentation. Then B o A has an efficient

presentation. Moreover, if A has an efficient presentation on d(A) generators, then

B o A has an efficient presentation on d(B o A) generators.

Proof. It is given that they have efficient presentations. And since they are finite

p-groups then by Proposition 3.3.5, d(B) = d(H1(B)), and their homology groups

are p-groups, as well. So p divides t(H2(A)), t(H2(B)) and t(H1(B)). Therefore by

Theorem 3.2.1, B oA has an efficient presentation, and then by Lemma 3.2.5, d(B oA) =

d(B) + d(A), as required. �

Corollary 3.3.7 Let B be a finite p-group (p odd) and suppose that B has an efficient

presentation on d(B) generators.

If |A| is odd and p | t(H2(A)) then B o A has an efficient presentation.
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It can be proved as Corollary 3.3.6.

Theorem 3.3.8 Let A be a finite abelian p-group, and let B be a finite p-group which

has an efficient presentation on d(B) generators. Then G = B o A has an efficient

presentation on d(G) generators.

Again, the proof of this theorem can be obtained by using a similar method to that

employed in the proof of Theorem 3.2.1, in conjuction with Lemma 3.2.5.

Corollary 3.3.9 Let A1, A2, · · · , Ar, · · · be finite abelian p-groups, and let B be a finite

p-group. Let

G0 = B,

G1 = G0 o A1,

G2 = G1 o A2,

...
...

Gr = Gr−1 o Ar.

If B has an efficient presentation on d(B) generators then Gr has an efficient presen-

tation on d(Gr) generators.

Proof. We will use induction on r.

i) Let r = 1. Then the result holds by Theorem 3.3.8.

ii) Let r > 1 then Gr = Gr−1 o Ar. By the induction hypothesis, Gr−1 has an

efficient presentation on d(Gr−1) generators. Moreover, Gr−1 is a p-group. Since Ar is

an abelian p-group then again, by Theorem 3.3.8, Gr has an efficient presentation on

d(Gr) generators. �
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Chapter 4

The p-Cockcroft property of the

semi-direct products of monoids

4.1 Introduction

In this chapter we introduce the definition of the semi-direct product of any two

monoids, a generating set for this product and a presentation of this semi-direct prod-

uct on the given above generating set, and then we give a trivialiser set (see Chapter

1) of the Squier complex of this presentation, as found by Wang (see [60]). Then we

give necessary and sufficient conditions for the standard presentation of the semi-direct

product of any two monoids to be p-Cockcroft, for any prime p or 0. Moreover, we

give some applications of this to the direct product of two monoids and the semi-direct

product of two finite cyclic monoids.

4.2 Monoid presentations

4.2.1 Homomorphisms of monoids defined by presentations

Let P be a monoid presentation. We will give necessary and sufficient conditions for

a function from the generators of P to a monoid M to induce a homomorphism from

the monoid presented by P , say M(P), to the monoid M .
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Let M be a monoid, and let x be a set. Consider a function

ψ : x −→M, x 7−→ mx. (4.1)

For any non-empty positive word W on x, say W = x1x2 · · ·xr, we define

ψ(W ) = mx1mx2 · · ·mxr (product in M).

Also, if W is the empty positive word, we define

ψ(W ) = 1M .

It is clear that ψ is a homomorphism.

Lemma 4.2.1 Let P = [x ; r] be a monoid presentation. A mapping ψ, as in (4.1),

induces a homomorphism

ψ? : M(P) −→M, [x]P 7−→ mx

if and only if ψ(R+) = ψ(R−), for all R ∈ r.

Proof.

Suppose ψ(R+) = ψ(R−) for all R ∈ r. Let us consider the function

ψ? : M(P) −→M, [W ]P 7−→ ψ(W ).

We must show that this is well-defined. So suppose that [W1]P = [W2]P , where W1, W2

are positive words on x.

Special case :

The positive word W2 is obtained from the positive word W1 by applying a single

elementary operation [see Chapter 1]. So W1 = URεV , W2 = UR−εV for some positive

words U and V on x, R ∈ r and ε = ±1. Then we have

ψ(W1) = ψ(URεV )

= ψ(U)ψ(Rε)ψ(V )

= ψ(U)ψ(R−ε)ψ(V )

since ψ(R+) = ψ(R−) by assumption

= ψ(UR−εV )

= ψ(W2).
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General case :

There exists a finite sequence of positive words on x

W1 = U0, U1, · · · , Un = W2,

where Ui+1 is obtained from Ui (0 6 i 6 n − 1) by an elementary operation over

monoids. Then by the special case, we have

ψ(Ui+1) = ψ(Ui).

So

ψ(W1) = ψ(U0) = · · · = ψ(Un) = ψ(W2),

as required.

Also ψ? is a homomorphism:

ψ?([W1]P [W2]P) = ψ?([W1W2]P)

= ψ(W1W2)

= ψ(W1)ψ(W2)

since ψ is a homomorphism

= ψ? [W1]P ψ? [W2]P .

Moreover, for all x ∈ x

ψ? [x] = ψ(x) = mx.

Conversely, suppose that ψ? exists. Let R ∈ r, with R+ = x1x2 · · ·xn, R− =

x′1x
′
2 · · · x′k (xi, x

′
j ∈ x, 1 6 i 6 n, 1 6 j 6 k). So [R+]P = [R−]P , that is,

[x1x2 · · ·xn] = [x′1x
′
2 · · ·x′k]. Then

[x1] [x2] · · · [xn] = [x′1] [x′2] · · · [x′k] ,

⇒ ψ?([x1] [x2] · · · [xn]) = ψ?([x
′
1] [x′2] · · · [x′k])

⇒ mx1mx2 · · ·mxn = mx′1
mx′2
· · ·mx′k

since [x]P
ψ?7−→ mx and ψ? is a homomorphism

⇒ ψ(R+) = ψ(R−),
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as required. �

Let

Matn(Z+) = {M : M is a n× n-matrix with non-negative integer entries}.

This is a monoid under matrix multiplication where the identity element is the n× n

identity matrix.

Example 4.2.2 Let P = [x, y ; x2y3 = yx] be a monoid presentation. Let us choose

a map

ψ : {x, y} −→Mat2(Z+), x 7−→ m1, y 7−→ m2,

where

m1 =

 1 0

0 0

 and m2 =

 0 1

0 0

 .
Thus, since ψ(x2y3) = ψ(yx) then, by Lemma 4.2.1, ψ induces a homomorphism

ψ? : M(P) −→Mat2(Z+), [x]P 7−→ m1, [y]P 7−→ m2.

♦

Example 4.2.3 Let P be as in Example 4.2.2. Let us choose a map

ψ̂ : {x, y} −→Mat2(Z+), x 7−→ m1, y 7−→ m2,

where

m1 =

 1 1

1 1

 and m2 =

 1 0

0 0

 .
Here, since ψ̂(x2y3) 6= ψ(yx) then ψ̂ does not induce a homomorphism

ψ̂? : M(P) −→Mat2(Z+).

♦
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4.2.2 Presentations of given monoids

Definition 4.2.4 Let M be a monoid, and let m = {mx : x ∈ x} be a generating set

for M . We say that a presentation P = [x ; r] is a presentation of M on the generating

set m, if the mapping

ψ : x −→M, x 7−→ mx

induces an isomorphism

ψ? : M(P) −→M, [x] 7−→ mx.

Example 4.2.5 (Free abelian monoids) Let the monoid M be Z+n. Recall that

Z+n consist of all n-vectors v = (v1, v2, · · · , vn) where v1, · · · , vn are non-negative

integers. This is a monoid under vector addition where the identity element is 0 =

(0, 0, · · · , 0). Then, Z+n is generated by the elements mi = (0, 0, · · · , 1, 0, · · · , 0) where

the integer in the ith position is 1 and all other entries are 0 (1 6 i 6 n). Then

P = [xi (1 6 i 6 n) ; xixj = xjxi (1 6 i < j 6 n)] (4.2)

is a presentation of Z+n on the set {mi : 1 6 i 6 n}. (The proof of this will be given

later in this chapter.) ♦

We now discuss finite cyclic monoids. Some of this material may also be found

in [32] (see “Monogenic semigroups”).

Let M be a finite cyclic monoid of order k > 1, generated by m say. Then

1, m, m2, · · · , mk

all belong to M . Since there are k + 1 elements in this list then the elements can not

all be distinct. So there exists 0 6 p < q 6 k such that mp = mq.

Lemma 4.2.6 If mp = mq in M with 0 6 p < q 6 k then q = k.

Proof. Firstly, we prove by induction on n that mn = mα(n) for some 0 6 α(n) 6 q−1.
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• Let 0 6 n 6 q − 1. Then take α(n) = n.

• Now suppose n > q, and assume inductively that mt = mα(t) for some 0 6 α(t) 6

q − 1, for all t < n. Let us write n = λq + µ where λ > 1, 0 6 µ < q. Then

mn = mλq+µ = mλqmµ = (mq)λmµ

= (mp)λmµ (since mp = mq)

= mλpmµ = mλp+µ.

By inductive hypothesis, since λp + µ < n then mλp+µ = mα(λp+n) for some

0 6 α(λp+ µ) 6 q − 1. So, mn = mα(λp+µ). Then take α(n) = α(λp+ µ). Hence

we get

mn = mα(n) for some 0 6 α(n) 6 q − 1.

This implies that M = {1, m, m2, · · · , mq−1}. But since |M | = k this means that k

must be equal to q.

Hence the result. �

We deduce from this lemma that

i) we have mk = ml for some 0 6 l < k,

ii) the elements of M are 1, m, m2, · · · , mk−1 and since the order of M is k then

these elements must all be distinct,

iii) the positive integer l in i) is uniquely determined by M , for if there exists l′ ∈ Z+

(l′ 6= l, 0 6 l′ < k) such that ml′ = mk then this gives ml′ = ml, which contradicts

the above lemma.

Lemma 4.2.7 A presentation for M on the generating set {m} is

Pk,l =
[
x ; xk = xl

]
. (4.3)

Proof. Let us consider the mapping x
ψ7−→ m. Then, by Lemma 4.2.1, we get an

induced homomorphism

ψ? : M(Pk,l) −→M, [x] 7−→ m,
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since ψ(xk) = ψ(xl) by i). Note that ψ? is onto since m ∈ Imψ?. Clearly Pk,l is a

complete rewriting presentation, and the irreducible elements are

1, x, x2, · · · , xk−1.

Hence the distinct elements ofM(Pk,l) are [1], [x], [x2], · · · , [xk−1], and then |M(Pk,l)| =

k. Now if ψ? were not injective then |Imψ?| < |M(Pk,l)| = k. But this gives a contra-

diction. So ψ? is injective, and is thus an isomorphism. �

We have now proved that any cyclic monoid of order k is isomorphic to M(Pk,l) for

some 0 6 l < k.

Now, for any 0 6 l < k, M(Pk,l) is a cyclic monoid of order k, generated by [x].

We then deduce from this and the previous paragraph that, up to isomorphism, the

cyclic monoids of order k are

M(Pk,l) where l = 0, 1, · · · , k − 1.

Lemma 4.2.8 If l 6= l′ then M(Pk,l) 6∼= M(Pk,l′).

Proof. Let us assume that l < l′, and consider the cyclic group C of order k − l,

generated by c. There is a homomorphism γ fromM(Pk,l) onto C, given by [x]Pk,l
γ7−→ c.

Now if there were an isomorphism

ω : M(Pk,l′) −→M(Pk,l)

then the composition γω, say γ′ would give a homomorphism from M(Pk,l′) onto C.

Hence γ′([x]Pk,l′ ) would have to be a generator, say ĉ of C. But since [x]kPk,l′ = [x]l
′
Pk,l′

then we would have

ĉk = γ′([x]kPk,l′ ) = γ′([x]l
′

Pk,l′ ) = ĉl
′
,

so ĉ(k−l′) = 1 in C. But since k − l′ < k − l this contradicts the fact that the order of

ĉ must be k − l.

Hence the result. �

Let us denote M(Pk,l) by Mk,l. Summarizing all the above, we have
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Theorem 4.2.9 For a fixed k > 1 the monoids Mk,l (0 6 l 6 k − 1) are cyclic of

order k, and are pairwise non-isomorphic. Any cyclic monoid of order k is isomorphic

to Mk,l for some l.

Let us consider the elements of Mk,l more closely. Recall that they are the equiva-

lence classes [xi] (0 6 i < k). For 0 6 i < l, the equivalence class [xi] just consist of

the single element xi. However for i > l, the equivalence class [xi] consist of infinitely

many elements which are defined by

[xi] = {xi+q(k−l) : q = 0, 1, 2, · · ·}.

Example 4.2.10 Let us take the monoid M5,3. The equivalence classes are

[x0] = {1}, [x1] = {x}, [x2] = {x2},

[x3] = {x3, x5, x7, · · ·}, [x4] = {x4, x6, x8, · · ·}.

♦

Suppose m, n (m 6 n) belong to the same equivalence class [xi]. If i < l then

m = n. Suppose i > l. Then we must have

m = i+ q(k − l) and n = i+ r(k − l),

where q, r are non-negative integers. There will then be a positive path (that is, a

monoid picture with all discs labelled by the relator xk = xl with sign +1) in the

Squier complex from xm to xi of length q, and similarly from xn to xi of length r. This

can be illustrated geometrically as follows.
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Therefore PnP−1
m is a path from xn to xm, and

expR(PnP−1
m ) = r − q,

where R is the relator xk = xl. Since r − q =
n−m
k − l

then we have

expR(PnP−1
m ) =

n−m
k − l

.

Note that when i < l (that is, m = n) we have the empty path from xn to xm.

Therefore, we have

Lemma 4.2.11 Suppose xm and xn (m 6 n) are in the same equivalence class. Then

there is a monoid picture Qn,m with ι(Qn,m) = xn, τ(Qn,m) = xm and

expR(Qn,m) =
n−m
k − l

.

Remark 4.2.12 Actually, one could take Pn to be of the form Dn,mPm, where Dn,m is

a path from xn to xm, so that PnP−1
m is freely equal to Dn,m.

Example 4.2.10 (continued) Let us choose m = 6 and n = 8. Notice that x6, x8 are

in the same equivalence class [x4]. Then we can show that the picture P8P−1
6 is freely

equal to D8,6 as in the following figure.
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One can give a trivializer set of the Squier complex of Mk,l as follows.

Lemma 4.2.13 Let M be the finite cyclic monoid with the presentation Pk,l, as in

(4.3). Then a trivializer set of the Squier complex D(Pk,l) is given by the pictures Pik,l
(1 6 i 6 k − 1), as in Figure 4.1.
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Figure 4.1:

Proof. Since Pk,l is a complete rewriting presentation then, by “overlapping”, we can

obtain the pictures in Figure 4.1, as required. �
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4.2.3 Endomorphisms of monoids

A homomorphism from a monoid to itself is called an endomorphism. Let M be a

monoid. Then the set of all endomorphisms of M form a monoid under composition,

where the identity element is id : M −→M , and we denote this monoid by End(M).

Let P = [x ; r] be a presentation of M , that is, M(P) ∼= M . For each x ∈ x, let us

consider a map

ξ : x −→M(P), x 7−→ [Wx] ,

where Wx is a positive word on x. In order to show that this induces a homomorphism,

we must use Lemma 4.2.1. For any positive word V on x, say V = x1x2 · · ·xn, let

ξ(V ) = [Wx1Wx2 · · ·Wxn ] (product in M(P)).

Then the map ξ induces a homomorphism if and only if

ξ(R+) = ξ(R−),

for all R ∈ r.

Example 4.2.14 Let M be Z+n, and let M be an n × n-matrix with non-negative

integral entries. Then we get a mapping

ψM : Z+n −→ Z+n, v 7−→ vM,

where v = (v1, v2, · · · , vn) as in Example 4.2.5. Actually, ψM ∈ End(Z+n) and ψM1ψM2 =

ψM1M2. We should note that, if φ ∈ End(Z+n) then there exists a matrix M (depending

on φ) such that φ = ψM.

By the mapping

M 7−→ ψM,

we get an isomorphism from the monoid Matn(Z+) to the monoid End(Z+n). ♦

Example 4.2.15 Let M be a cyclic monoid generated by m.
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Case 1 : Suppose M is a cyclic monoid of order k. Then, by Lemma 4.2.7 and

Definition 4.2.4, Mk,l
∼= M where 0 6 l 6 k − 1. By Lemma 4.2.1, the mapping

x
ξ7−→ [xi] (0 6 i < k)

induces a homomorphism

ψi : Mk,l −→Mk,l

since [xki] = [xli] in Mk,l. Moreover, if ψ : Mk,l −→Mk,l is any endomorphism then we

must have ψ([x]) = [xi] for some 0 6 i < k, so ψ and ψi agree on the generating set

{[x]} of Mk,l and so are equal. Hence ψ0, ψ1, · · · , ψk−1 are the only endomorphisms

of Mk,l. Since these endomorphisms take different values at [x] then they are distinct.

Hence

End(Mk,l) = {ψi : i = 0, 1, · · · , k − 1}.

Case 2 : Suppose M is an infinite cyclic monoid. This means we are working on

Z+n where n = 1, as in Example 4.2.14. So we have

Mat1(Z+) ∼= End(M),

that is, Z+ ∼= End(M). ♦

We now consider some one-relator monoids.

Example 4.2.16 Let M be the one-relator monoid with the presentation

P =
[
x1, x2 ; x1x

2
2 = x2x1x2x1

]
.

In [21], it has been proved that M has no endomorphism other than the identity homo-

morphism. ♦

In the next three examples non-trivial endomorphisms will be introduced for some

one-relator monoids which will be used later in this thesis.

Example 4.2.16.(a) Let M be the one-relator monoid given by the presentation

P =
[
x1, x2 ; x1x2x1 = x2x

k
1

]
. By Lemma 4.2.1, a mapping

ξ : {x1, x2} −→M(P), x1 7−→ [xi1], x2 7−→ [x2],
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where i ∈ Z+, induces an endomorphism if and only if

[xi1x2x
i
1] = [x2x

ki
1 ].

This equality always holds as can be shown as follows.

[xi1x2x
i
1] = [xi−1

1 x1x2x1x
i−1
1 ] = [xi−1

1 x2x
k
1x

i−1
1 ] (since x1x2x1 = x2x

k
1)

= [xi−2
1 x1x2x1x

i−2
1 xk1] = [xi−2

1 x2x
k
1x

i−2
1 xk1] (since x1x2x1 = x2x

k
1)

...
...

= [xi−i1 x2x
k
1x

(i−1)k
1 ] = [x2x

ki
1 ].

♦

Example 4.2.16.(b) Let M be given by the presentation P =
[
x1, x2 ; xk1x2 = x2x

k
1

]
.

Again, by Lemma 4.2.1, a mapping

ξ : {x1, x2} −→M(P), x1 7−→ [xi1], x2 7−→ [xj2],

where i, j ∈ Z+, induces an endomorphism if and only if

[xki1 x
j
2] = [xj2x

ki
1 ].

Indeed,

[xki1 x
j
2] = [xki−k1 xk1x2x

j−1
2 ] = [xki−k1 x2x

k
1x

j−1
2 ] (since xk1x2 = x2x

k
1)

= [xki−2k
1 xk1x2x

k
1x2x

j−2
2 ] = [xki−2k

1 x2x
k
1x2x

k
1x

j−2
2 ] (since xk1x2 = x2x

k
1)

...
...

= [xki−ik1 xj−1
2 xk1x2x

(i−1)k
1 ] = [x

(j−1)
2 x2x

k
1x

(i−1)k
1 ] (since xk1x2 = x2x

k
1)

= [xj2x
ki
1 ].

♦

Example 4.2.16.(c) Let M be given by the presentation P =
[
x1, x2 ; x1x2 = x2x

k
1

]
.

As previously, by Lemma 4.2.1, a mapping

ξ : {x1, x2} −→M(P), x1 7−→ [xi1], x2 7−→ [x2],
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where i ∈ Z+, induces an endomorphism if and only if

[xi1x2] = [x2x
ki
1 ].

This always holds as can be shown as follows.

[xi1x2] = [xi−1
1 x1x2] = [xi−1

1 x2x
k
1] (since x1x2 = x2x

k
1)

= [xi−2
1 x1x2x

k
1] = [xi−2

1 x2x
k
1x

k
1] (since x1x2 = x2x

k
1)

...
...

= [x
i−(i−1)
1 x2x

k
1 · · ·xk1] = [x1x2x

k
1 · · ·xk1] = [x1x2x

k(i−1)
1 ]

= [x2x
k
1x

k(i−1)
1 ] (since x1x2 = x2x

k
1)

= [x2x
ki
1 ].

♦

4.3 Semi-direct products of monoids

4.3.1 The definition

Let A and K be monoids, and let us take a monoid homomorphism

θ : A −→ End(K), a 7−→ θa (a ∈ A), 1 7−→ idEnd(K). (4.4)

Then we can define the semi-direct product D of K by A, as follows.

The elements of D are all ordered pairs (a, k) where a ∈ A, k ∈ K and the product

is given by

(a, k)(a′, k′) = (aa′, (kθa′)k
′). (4.5)

By checking the monoid axioms, we can show that D is a monoid as follows.

a) The closure holds by (4.5).

b) The associativity:
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Let a1, a2, a3 ∈ A and k1, k2, k3 ∈ K. Then we will check whether the equality

(a1, k1)[(a2, k2)(a3, k3)] = [(a1, k1)(a2, k2)](a3, k3)

holds. Let LHS and RHS be the left hand side and the right hand side of this

above equality, respectively. Then we get

LHS = (a1, k1)(a2a3, (k2θa3)k3) by (4.5)

= (a1(a2a3), (k1θa2a3)(k2θa3)k3) by (4.5)

= (a1a2a3, (k1θa2θa3)(k2θa3)k3) since θ is a homomorphism,

and

RHS = (a1a2, (k1θa2)k2)(a3, k3) by (4.5)

= ((a1a2)a3, (((k1θa2)k2)θa3)k3) by (4.5)

= (a1a2a3, (k1θa2θa3)(k2θa3)k3) since θa3 is a homomorphism.

So, the associativity holds.

c) The identity:

Let 1A and 1K be the identity elements of A and K, respectively. Then the

identity element of D is (1A, 1K). That is, for all (a, k) ∈ D, we need to show

that

(1A, 1K)(a, k) = (a, k) = (a, k)(1A, 1K).

First of all, we get

(1A, 1K)(a, k) = (1Aa, (1Kθa)k),

by (4.5). Now, since θa : K −→ K (a ∈ A) is a homomorphism then θa maps the

identity element of K which is 1K to itself. So, (1Kθa)k = k for all k ∈ K. Thus,

(1Aa, (1Kθa)k) = (a, k).

On the other hand, we get

(a, k)(1A, 1K) = (a1A, (kθ1A)1K),
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by (4.5). Since 1A ∈ A then θ1A ∈ End(K). Furthermore, since θ1A = idEnd(K)

then θ1A is the identity homomorphism of K. Then, for all k ∈ K, kθ1A = k.

Thus, (a1A, (kθ1A)1K) = (a, k).

Therefore D is a monoid.

Remark 4.3.1 For any (a, k) ∈ D where a ∈ A and k ∈ K, we have

(a, k) = (a, 1K)(1A, k). (4.6)

(To see this let us take (a, 1K)(1A, k). Then, by (4.5), we get (a1A, (1Kθ1A)k). Since

θ1A is the identity homomorphism and 1K is the identity element of K then we get

(a, k), as required.)

4.3.2 A generating set for D

Let us choose generating sets

k = {ky : y ∈ y} and a = {ax : x ∈ x}

for the monoids K and A, respectively. Then the set

d = {(1, ky) (y ∈ y), (ax, 1) (x ∈ x)}

generates D. That is to say, any element in D, say (a, k) where a ∈ A, k ∈ K, can be

written as a product of some elements from the set d. We need to show that

(a, k) = d1d2 · · · dr where di ∈ d, 1 6 i 6 r.

Since a generates A and k generates K, we have

a = ax1ax2 · · · axm and k = ky1ky2 · · · kyn , (4.7)

where xi ∈ x, yj ∈ y, 1 6 i 6 m, 1 6 j 6 n and m, n > 0.
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Thus,

(a, k) = (a, 1)(1, k) by (4.6),

= (ax1ax2 · · · axm , 1)(1, ky1ky2 · · · kyn) by (4.7),

= (ax1 , 1)(ax2 , 1) · · · (axm , 1)(1, ky1)(1, ky2) · · · (1, kyn) by (4.6) and

by the fact that θaxi maps the identity element of K to itself,

and then, since each of these pairs is in the set of d then we get what we required.

4.3.3 A presentation for D

Let PK = [y ; s] and PA = [x ; r] be presentations for K, A on the generating sets k,

a, respectively. Then, by Definition 4.2.4, we have isomorphisms

ψK? : M(PK) −→ K, [y]PK 7−→ ky

ψA? : M(PA) −→ A, [x]PA 7−→ ax

induced by the functions

ψK : y −→ K, y 7−→ ky,

ψA : x −→ A, x 7−→ ax.

For each y ∈ y, x ∈ x, let yθx denote a positive word on y representing the element

kyθax of K, that is ψK? [yθx]PK = kyθax . Let Tyx denote the relator yx = x(yθx), and

let t be the set of all relators of the form Tyx (x ∈ x, y ∈ y).

The proof of the following theorem can be found in [55].

Theorem 4.3.2 A presentation for D on the generating set d is given by

PD = [x, y ; r, s, t] . (4.8)

Remark 4.3.3 If W = y1y2 · · · ym is a positive word on y then for any x ∈ x, we

denote the positive word (y1θx)(y2θx) · · · (ymθx) by Wθx. If U = x1x2 · · ·xn is a positive

word on x then for any y ∈ y, we denote the positive word (· · · ((yθx1)θx2)θx3 · · ·)θxn)

by yθU , and this can be represented by a picture, say AU,y, as in Figure 4.2.
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4.3.4 Trivializer of the Squier complex D(PD)

Let XA and XK be trivialiser sets of D(PA) and D(PK), respectively.

Let S ∈ s, x ∈ x. Since [S+θx]PK = [S−θx]PK , there is a non-spherical picture, say

BS,x, over PK with

ι(BS,x) = S+θx and τ(BS,x) = S−θx.

Note that, there are various BS,x pictures which can be drawn.

Let R ∈ r, y ∈ y. Then we get non-spherical pictures AR+,y and AR−,y, respectively,

as in Figure 4.2. We should note that, these pictures consist of only Tyx discs (x ∈ x).

Moreover, since
[
yθR+

]
PK

=
[
yθR−

]
PK

, there is a non-spherical picture, say Cy,θR , over

PK with

ι(Cy,θR) = yθR+ and τ(Cy,θR) = yθR− .

We should also note that there are various Cy,θR pictures which can be drawn.
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Our aim is now to construct spherical monoid pictures by using these above non-

spherical pictures.

Let us take a single BS,x picture. If we process the initial positive word of BS,x,

which is S+θx, and the terminal positive word of BS,x, which is S−θx, by a single x-arc,

then we get some Tyx (y ∈ y) discs at the top (and at the bottom) of the BS,x picture.

Then we have a new picture containing a single BS,x picture and some Tyx (y ∈ y)

discs. But for this picture, we get the positive words S+x (at the bottom) and S−x

(at the top), respectively, that is, it is a non-spherical picture. So, to get a spherical

monoid picture from this non-spherical picture, we must fix a single S-disc on the top

(or bottom) of this non-spherical picture. Then we have a spherical monoid picture,

call it PS,x, as shown in Figure 4.3.

Now let us take the pictures AR+,y and A−1
R−,y

. We can combine these two pictures

by

• fixing a single R-disc between them, and then

• fixing a single Cy,θR picture between the positive words yθR+ and yθR− , respec-

tively. Then we get a new picture, and for this picture, we get the positive words yR+

(at the top) and yR− (at the bottom), respectively. To get a spherical monoid picture,

we must fix a single R-disc on the top (or bottom) of this picture. Then we have a

spherical monoid picture, say PR,y, as in Figure 4.3.

Let

C1 = {PS,x : S ∈ s, x ∈ x} and C2 = {PR,y : R ∈ r, y ∈ y}.

The proof of the following theorem can be found in [60].

Theorem 4.3.4 Suppose that D = K oθ A is a semi-direct product with associated

presentation PD, as in (4.8). Let XA and XK be trivialiser sets of the Squier complexes

D(PA) and D(PK), respectively. Then a trivialiser set of D(PD) is

XA ∪XK ∪C1 ∪C2. (4.9)

Let us denote the set (4.9) by XD.
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4.3.5 Defining a homomorphism θ : A −→ End(K)

Suppose that K and A are given by presentations PK = [y ; s] and PA = [x ; r],

respectively. We have seen in Section 4.2.3 how to obtain endomorphisms of K. Let

us suppose that, for each x ∈ x, we have obtained an endomorphism ψx of K in this

way. So we have a mapping

x −→ End(K), x 7−→ ψx.

In order to show that this induces a homomorphism

θ : A −→ End(K),
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we must use the basic Lemma 4.2.1. For any positive wordW on x, sayW = x1x2 · · ·xn,

let

ψW = ψx1ψx2 · · ·ψxn (product in End(K)).

Then the above map induces a homomorphism θ if and only if

ψR+ = ψR− ,

for all R ∈ r. Since two endomorphisms of K agree if and only if they agree on a

generating set, we must show that

[y]ψR+ = [y]ψR− ,

for all y ∈ y, R ∈ r.

Example 4.3.5 Let K be Z+n. Let us consider the standard presentation (4.2) of Z+n,

and then let y be the set of generators and r be the set of relators of this presentation.

Then PK = [y ; r] becomes a presentation of the monoid Z+n.

In Example 4.2.14, we showed that Matn(Z+) ∼= End(Z+). So the endomorphism

ψx (x ∈ x) will be ψMx for some matrix Mx. For any positive word W = x1x2 · · ·xn

on x, let MW be the product Mx1Mx2 · · ·Mxn of the matrices Mx1 , · · · ,Mxn. Then the

mapping x 7−→ ψMx (x ∈ x) induces a homomorphism

θ : A −→ End(Z+n)

if and only if MR+ = MR−, for all R ∈ r. ♦

Let us give a specific example of this as follows.

Example 4.3.5.(a) Let K be the free abelian monoid rank 2 with the presentation

PK = [y1, y2 ; y1y2 = y2y1] as in (4.2), and let A be the one-relator monoid with the

presentation PA = [x1, x2 ; x2
1x2 = x2x1].

Let us take two matrices Mx1 =

 1 2

0 1

 and Mx2 =

 2 5

0 1

. Thus, since

M2
x1

Mx2 = Mx2Mx1 then the mapping x1 7−→ ψMx1
, x2 7−→ ψMx2

induces a homo-

morphism θ : A −→ End(Z+2
). ♦
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By the following example, we define a homomorphism from a finite cyclic monoid

to the endomorphism monoid of another finite cyclic monoid.

Example 4.3.6 Let K and A be two finite cyclic monoids with the presentations

PK =
[
y ; yk = yl

]
, PA =

[
x ; xµ = xλ

]
, (4.10)

respectively, where l < k and λ < µ (see Lemma 4.2.7). Let ψi (0 6 i < k) be an

endomorphism of K (see Example 4.2.15, Case 1). Then we have a mapping

x −→ End(K), x 7−→ ψi.

By Lemma 4.2.1, this induces a homomorphism

θ : A −→ End(K), x 7−→ ψi

if and only if

ψµi = ψλi .

Since ψµi and ψλi are equal if and only if they agree on the generator y of K, then we

must have

[yi
µ

] = [yi
λ

]. (4.11)

4.4 The p-Cockcroft property for semi-direct prod-

ucts

4.4.1 The general theorem

Theorem 4.4.1 Let p be a prime or 0. Then the presentation PD, as in (4.8), is

p-Cockcroft if and only if the following conditions hold.

(i) PA and PK are p-Cockcroft,

(ii) expy(S) ≡ 0 (mod p) for all S ∈ s, y ∈ y,
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(iii) expS0
(BS,x) ≡

 1, S0 = S

0, otherwise
(mod p) for all S0, S ∈ s, x ∈ x,

(iv) expS(Cy,θR) ≡ 0 (mod p) for all S ∈ s, y ∈ y, R ∈ r,

(v) expTyx(AR+,y) ≡ expTyx(AR−,y) (mod p) for all R ∈ r, y ∈ y and x ∈ x.

Proof. Since the trivialiser set XD contains the trivialiser sets XA of D(PA) and XK

of D(PK) by Theorem 4.3.4, then we must have PA and PK are p-Cockcroft. This gives

the condition (i).

Consider a picture PS,x (S ∈ s, x ∈ x). It contains a single S-disc, some Tyx (y ∈ y)

discs and a single B−1
S,x subpicture. First of all, this single S-disc must be balanced by

using the subpicture B−1
S,x which contains the remaining s-discs. Thus we must have

expS0
(BS,x) ≡

 1, S0 = S

0, otherwise
(mod p),

for all S0 ∈ s. So the condition (iii) holds. Furthermore, we need to count the number

of Tyx (y ∈ y) discs in the PS,x picture. For a fixed y ∈ y, the exponent sum of Tyx in

PS,x is

Ly(S+)− Ly(S−) =def expy(S).

Thus the condition (ii) must hold.

Consider a picture PR,y (R ∈ r, y ∈ y) which contains the subpictures AR+,y, A−1
R−,y

, Cy,θR

and two R-discs. Note that, the exponent sum of the R-discs will be equal to zero for

the picture PR,y, that is, we have

expR(PR,y) = 1− 1 = 0.

Let us consider the subpictures AR+,y and A−1
R−,y

which consist of only Tyx (x ∈ x)

discs. We should note that, Tyx (x ∈ x) discs are only contained in these subpictures,

in the picture PR,y. Since the picture PR,y contains a single subpicture AR+,y and single

subpicture A−1
R−,y

, then we have

expTyx(AR+,y)− expTyx(AR−,y) = expTyx(PR,y).
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Thus we must have

expTyx(AR+,y)− expTyx(AR−,y) ≡ 0 (mod p),

for all x ∈ x. So, the condition (v) holds. Also, let us consider the subpicture Cy,θR

which consist of only the S-discs (S ∈ s). So, we must have

expS(Cy,θR) ≡ 0 (mod p),

for all S ∈ s, and this gives the condition (iv). �

4.4.2 Direct products

In this section we will give necessary and sufficient conditions for the presentation of

the direct product of the monoids A and K to be p-Cockcroft (p a prime or 0).

The direct product corresponds to the case when θ is the trivial homomorphism

A −→ End(K), a 7−→ id (a ∈ A).

So, let us take

yθx = y, (4.12)

for all y ∈ y. Then, for x ∈ x, y ∈ y, the relator Tyx becomes simply

Tyx : yx = xy.

Then the picture AU,y becomes the picture as shown in Figure 4.4.

By using (4.12), we have

ι(BS,x) = S+ and τ(BS,x) = S− (S ∈ s, x ∈ x),

for the subpicture BS,x. Then we take BS,x to be the following form.
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By using (4.12), we have

ι(Cy,θR) = y and τ(Cy,θR) = y (R ∈ r, y ∈ y),

for the subpicture Cy,θR . Then Cy,θR can be chosen to consist of a single y-arc and no

discs.

Therefore, as a consequence of Theorem 4.4.1, we get the following result.

Theorem 4.4.2 Suppose that θ is the trivial homomorphism, and let p be a prime or

0. Then the presentation PD, as in (4.8), is p-Cockcroft if and only if the following

conditions hold.

(a) PA and PK are p-Cockcroft,

(b) expy(S) ≡ 0 (mod p) for all S ∈ s, y ∈ y,

(c) expx(R) ≡ 0 (mod p) for all R ∈ r, x ∈ x.

87



Proof. To prove this theorem, let us check the conditions of Theorem 4.4.1 hold.

i) To make (i) holds, we definitely need PA and PK are p-Cockcroft. So, this also

gives the condition (a).

ii) Clearly, the condition (ii) gives the condition (b).

iii) The condition (iii) obviously holds.

iv) The condition (iv) clearly holds.

v) It is clear that

expTyx(AR+,y) = Lx(R+) and expTyx(AR−,y) = Lx(R−).

So, to make (v) holds, we need

Lx(R+)− Lx(R−) ≡ 0 (mod p).

That is,

expx(R) ≡ 0 (mod p)

which gives the condition (c).

Hence the result. �

Let p be a prime or 0. Let K be the monoid presented by PK = [y ; s], and let

A be an infinite cyclic monoid generated by x. Then, a presentation for the monoid

K × Z+ can be given by

PK×Z+ = [y, x ; s, yx = xy (y ∈ y)] . (4.13)

As a consequence of Theorem 4.4.2 (so that Theorem 4.4.1), we have

Corollary 4.4.3 Let p be a prime or 0. The presentation PK×Z+, as in (4.13), is

p-Cockcroft if and only if

(a′) PK is p-Cockcroft,

(b′) expy(S) ≡ 0 (mod p) for all y ∈ y and S ∈ s.
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Proof. The proof is an easy application of the proof of Theorem 4.4.2. To make

(a) hold, we certainly need PK is p-Cockcroft. Notice that, PA is aspherical, hence

Cockcroft. So, these give the condition (a′). Clearly, (b) gives (b′), and the condition

(c) is vacuous. �

Example 4.4.4 As an example of Corollary 4.4.3, let us prove by induction on n that

the presentation P, as in (4.2), presents the monoid Z+n, and is Cockcroft.

• Let n = 1. Then, we get Z+ which is infinite cyclic monoid with a presentation

P1 = [y1 ; ] .

Then, P1 is aspherical, hence Cockcroft.

• Let us assume that

Pn−1 = [y1, y2 · · · , yn−1 ; yiyj = yjyi (1 6 i < j 6 n− 1)]

is a presentation of Z+n−1
and that it is Cockcroft. Let y be the set of generators

y1, · · · , yn−1, let s be the set of relators yiyj = yjyi (1 6 i < j 6 n − 1), and let x be

the generator yn. Then the set of relators yiyn = ynyi (1 6 i 6 n− 1) becomes the set

of relators t. Thus we have a presentation

Pn = [y1, y2 · · · , yn ; yiyj = yjyi (1 6 i < j 6 n− 1)

yiyn = ynyi (1 6 i 6 n− 1)]

of the monoid Z+n = Z+n−1 × Z+, as in (4.13). Notice that the presentation P, as

in (4.2) and Pn are equivalent. To establish the Cockcroft property of Pn, let us use

Corollary 4.4.3. By inductive hypothesis Pn−1 is Cockcroft, so the condition (a′) holds.

Also, for all S ∈ s, y ∈ y, expy(S) = 1 − 1 = 0 which gives the condition (b′). Thus,

Pn is Cockcroft, as required.

4.4.3 Semi-direct products of finite cyclic monoids

In this section we will give necessary and sufficient conditions for the presentation of

the semi-direct product of two finite cyclic monoids to be p-Cockcroft (p a prime).

89



Let K and A be two finite cyclic monoids with the presentations PK and PA,

respectively as in (4.10). Suppose that

[yi
µ

] = [yi
λ

].

Then the mapping x 7−→ ψi induces a homomorphism θ : A −→ End(K) (see Example

4.3.6).

Now, by Theorem 4.3.2, we have a presentation

PD = [y, x ; S, R, Tyx] , (4.14)

for the monoid D = K oθ A, where

S : yk = yl, R : xµ = xλ and Tyx : yx = xyi.

We have the picture BS,x as in Figure 4.5, and then expS(BS,x) = i.
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Figure 4.5:

By the assumption, since (4.11) holds then, by Lemma 4.2.11, there is a monoid

picture Cy,θR with

ι(Cy,θR) = yi
µ

, τ(Cy,θR) = yi
λ
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and

expS(Cy,θR) =
iµ − iλ

k − l
.

Also, we have the picture AR+,y (and similarly AR−,y) as in Figure 4.6. It is clear
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that

expTyx(AR+,y) = 1 + i+ i2 + · · ·+ iµ−1 =
iµ − 1

i− 1
,

and

expTyx(AR−,y) = 1 + i+ i2 + · · ·+ iλ−1 =
iλ − 1

i− 1
.

Let

m = k − l , n = i− 1 , t = iµ − iλ.

As a consequence of Theorem 4.4.1, we have the following result.
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Theorem 4.4.5 Let p be a prime. Suppose that KoθA is a monoid with the associated

monoid presentation PD, as in (4.14). Then PD is p-Cockcroft if and only if

p | m, p | n, p | t
m
, p | t

n
.

Proof. We will prove it by checking the conditions of Theorem 4.4.1 hold.

(i) By Lemma 4.2.13, trivialiser sets XK and XA of the Squier complexes D(PK)

and D(PA) respectively, can be given as in Figure 4.1. Thus, it can be seen that PK

and PA are p-Cockcroft (in fact Cockcroft), and then the condition (i) holds.

ii) expy(S) = k − l so for (ii) to hold, we must have p | k − l.

iii) To make (iii) hold, we need i ≡ 1 (mod p), so that p | i− 1.

iv) For the subpicture Cy,θR , we must have

p | i
µ − iλ

k − l
,

to make (iv) hold.

v) Also, to make (v) hold, we need

iµ − 1

i− 1
≡ iλ − 1

i− 1
(mod p),

by using the subpictures AR+,y and AR−,y. That is,

iµ − iλ

i− 1
≡ 0 (mod p).

Hence the result. �

We remark that as a consequence of Theorem 4.4.1, one can say that the monoid

presentation PD, as in (4.14), is Cockcroft if and only if µ = λ, k = l and i = 1.

However, since we require l < k, λ < µ then this presentation can never be Cockcroft.

Example 4.4.6 Let k = 10, l = 6, µ = 4, λ = 2 and i = 3. Then we get

m = 4, n = 2, t = 34 − 32 = 72,
t

m
= 18,

t

n
= 36.
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Hence p = 2 divides these all values, and then by Theorem 4.4.5, PD is 2-Cockcroft.

Similarly, by chosing k = 6, l = 2, µ = 5, λ = 3 and i = 3, we get

m = 4, n = 2, t = 35 − 34 = 216,
t

m
= 54,

t

n
= 108,

then again PD is 2-Cockcroft. ♦

Example 4.4.7 Let p be any prime, and let

i = p+ 1, l = 1, k = (p+ 1)(
(p+ 1)p − 1

p
) + 1, λ = 1, µ = p+ 1.

Then,

m = (p+ 1)(
(p+ 1)p − 1

p
), n = p, t = (p+ 1)p+1 − (p+ 1)1.

Since p divides m, n,
t

m
and

t

n
then, by Theorem 4.4.5, PD is p-Cockcroft. ♦
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Chapter 5

Minimal presentations of

semi-direct products of some

monoids

5.1 Introduction

In this chapter, as an application of the previous chapter, we begin by giving neces-

sary and sufficient conditions for a semi-direct product of a one-relator monoid by an

infinite cyclic monoid to be p-Cockcroft, for any prime p or 0, and then we give some

applications of this to semi-direct products of the free abelian monoid of rank 2 by an

infinite cyclic monoid, and semi-direct products of some particular one-relator monoids

by an infinite cyclic monoid.

Following this, we introduce our main result of this chapter which gives sufficient

conditions for the presentation of a semi-direct product of a one-relator monoid by an

infinite cyclic monoid to be minimal but not efficient, and then we give some applica-

tions of this.
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5.2 Semi-direct products of one-relator monoids by

infinite cyclic monoids

Let K be a one-relator monoid with presentation PK = [y ; S+ = S−], and let A be

the infinite cyclic monoid with presentation PA = [x ; ] . Let ψ be an endomorphism

of K. Then by Section 4.3.5, the mapping x 7−→ ψ induces a homomorphism

θ : A −→ End(K),

and we can form the semi-direct product D = K oθ A. This will have a presentation

PD = [y, x ; S+ = S−, t] , (5.1)

where t is the set of relators Tyx (y ∈ y). Notice that, since PA = [x ; ] is aspherical

then XA = ∅. Also, for the relator S, let us assume that ι(S+) 6= ι(S−) (or τ(S+) 6=

τ(S−)). So, by [34], PK is aspherical, so XK = ∅. Moreover, since r = ∅ then C2 = ∅.

Therefore XD = C1. Note that we have a single PS,x picture, as in Figure 5.1, in the

set C1 since K is a one-relator monoid.

5.2.1 The p-Cockcroft property

Theorem 5.2.1 Let p be a prime or 0, and let K be a one-relator monoid, with relator

S say. Suppose that ι(S+) 6= ι(S−) (or τ(S+) 6= τ(S−)). Let D be a semi-direct product

of K by an infinite cyclic monoid A with associated presentation PD, as in (5.1). Then

PD is p-Cockcroft if and only if

(a) expy(S) ≡ 0 (mod p) for all y ∈ y,

(b) expS(BS,x) ≡ 1 (mod p).

Proof. It is an easy application of the proof of Theorem 4.4.1.

Since PA and PK are aspherical and C2 = ∅ then the conditions (i), (iv) and (v)

of Theorem 4.4.1 are trivial. On the other hand, the condition (ii) gives (a) and the

condition (iii) gives (b).
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Figure 5.1:

Hence the result. �

Example 5.2.2 Let K be the free abelian monoid of rank 2, presented by

PK = [y1, y2 ; y1y2 = y2y1] ,

and let ψ be the endomorphism ψM where M is the matrix

 α α′

β β′

 (α, α′, β, β′ ∈

Z+), given by

[y1] 7−→ [yα1 y
α′

2 ] and [y2] 7−→ [yβ1 y
β′

2 ]

(see Examples 4.3.5 and 4.3.5.(a)).

By Theorem 4.3.2, we have the presentation

PD = [y1, y2, x ; S, Ty1x, Ty2x] , (5.2)
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for the monoid D = K oθ A, where

S : y1y2 = y2y1, Ty1x : y1x = xyα1 y
α′

2 and Ty2x : y2x = xyβ1 y
β′

2 ,

respectively. Note that the picture BS,x can be given by Figure 5.2. ♦
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Now, by considering the picture BS,x as in Figure 5.2, we prove the following equal-

ity.

Lemma 5.2.3

expS(BS,x) = detM.
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Proof. We have αβ′-times positive and α′β-times negative S-discs, in BS,x. So that

expS(BS,x) = αβ′ − α′β,

= det M,

as required. �

As a consequence of Theorem 5.2.1, we have

Corollary 5.2.4 Let p be a prime or 0. Let PD be as in (5.2). Then PD is p-Cockcroft

if and only if

det M ≡ 1 (mod p).

Proof. Let us check the conditions of Theorem 5.2.1 hold.

Since expy1(S) = 0 = expy2(S) then (a) holds. Also, by Lemma 5.2.3, (b) holds if

and only if det M ≡ 1 (mod p). �

Example 5.2.5 Let K be the one-relator monoid with the presentation

PK = [y1, y2 ; S] ,

where S : y1y2y1 = y2y
k
1 , and let ψx be the endomorphism given by

[y1] 7−→ [yi1] and [y2] 7−→ [y2],

where i ∈ Z+ (see Example 4.2.16.(a)). By Theorem 4.3.2, we have the presentation

PD =
[
y1, y2, x ; S, y1x = xyi1, y2x = xy2

]
(5.3)

for the monoid D = K oθ A. The picture BS,x can be given by Figure 5.3. ♦

We get the following result for the above example, as a consequence of Theorem

5.2.1.
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Corollary 5.2.6 Let p be a prime or 0. Let PD be as in (5.3). Then PD is p-Cockcroft

if and only if

a′) k ≡ 2 (mod p)

and

b′) i ≡ 1 (mod p).

Proof. Let us check the conditions of Theorem 5.2.1 hold.

It is clear that expy1(S) = 2 − k and expy2(S) = 1 − 1 = 0. Then to make the

condition (a) hold, we must have k − 2 ≡ 0 (mod p) which gives a′). Also, since

expS(BS,x) = i then the condition (b) gives b′).

Hence the result. �

Example 5.2.5 (continued) One can choose k = 2 and i = 3 then PD is 2-Cockcroft,

or k = 5 and i = 4 then PD is 3-Cockcroft. ♦
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Remark 5.2.7 It is easy to see that if k = 2 and i = 1 then PD is 0-Cockcroft.

But the condition i = 1 implies that ψx is the identity map and so θ is the trivial

homomorphism, as in (4.12). Then the presentation PD becomes a presentation, as in

(4.13), of the direct product K × Z+. Thus, by Corollary 4.4.3, we can see directly PD

is 0-Cockcroft when k = 2 and i = 1.

Example 5.2.8 Let K be given by the presentation PK = [y1, y2 ; S] , where S :

yk1y2 = y2y
k
1 , and let ψx be the endomorphism given by

[y1] 7−→ [yi1] and [y2] 7−→ [yj2],

where i, j ∈ Z+ (see Example 4.2.16.(b)). By Theorem 4.3.2, we have a presentation

PD =
[
y1, y2, x ; S, y1x = xyi1, y2x = xyj2

]
(5.4)

for the monoid D. For this example, the picture BS,x can be given by Figure 5.4. ♦

We then get the following, as a consequence of Theorem 5.2.1.

Corollary 5.2.9 Let p be a prime or 0. Let PD be as in (5.4). Then PD is p-Cockcroft

if and only if

ij ≡ 1 (mod p).

Proof. Again, let us check the conditions of Theorem 5.2.1 hold.

Since expy1(S) = k − k = 0 and expy2(S) = 1 − 1 = 0 then the condition (a)

holds. Also, since expS(BS,x) = ij then to make the condition (b) hold, we must have

ij ≡ 1 (mod p) which gives the condition of the above corollary, as required. �

Example 5.2.8 (continued) One can choose i = 3 and j = 1 then PD is 2-Cockcroft,

or i = j = 2 then PD is 3-Cockcroft. ♦

Remark 5.2.10 It is clear that if i = j = 1 then PD is 0-Cockcroft. But as we said in

Remark 5.2.7, the presentation PD becomes a presentation, as in (4.13), of the direct

product K × Z+ when i = j = 1 holds. Then, by Corollary 4.4.3, one can say directly

the presentation PD is 0-Cockcroft.
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A similar example can be given as follows.

Example 5.2.11 Let K be given by the presentation PK = [y1, y2 ; S] , where S :

y1y2 = y2y
k
1 , and let ψx be the endomorphism given by

[y1] 7−→ [yi1] and [y2] 7−→ [y2],

where i ∈ Z+ (see Example 4.2.16.(c)). By Theorem 4.3.2, we have a presentation

PD =
[
y1, y2, x ; S, y1x = xyi1, y2x = xy2

]
(5.5)

for the monoid D. Also, the picture BS,x can be given by Figure 5.5. ♦

Thus, as a consequence of Theorem 5.2.1, we get
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Corollary 5.2.12 Let p be a prime or 0. Let PD be as in (5.5). Then PD is p-Cockcroft

if and only if

a′) k ≡ 1 (mod p),

b′) i ≡ 1 (mod p).

Proof. Again, let us check the conditions of Theorem 5.2.1 hold.

Clearly expy1(S) = 1 − k and expy2(S) = 1 − 1 = 0, so to make the condition (a)

hold, we must have k− 1 ≡ 0 (mod p) which gives a′). Also, since expS(BS,x) = i then

the condition (b) gives b′).

Hence the result. �

Example 5.2.11 (continued) One can choose i = 5 and k = 7 then PD is 2-Cockcroft,

or i = k = 4 then PD is 3-Cockcroft. ♦
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Remark 5.2.13 Clearly if i = k = 1 then PD is 0-Cockcroft. But as we said in

Remarks 5.2.7 and 5.2.10, the presentation PD becomes a presentation, as in (4.13), of

the direct product K × Z+ when i = k = 1 holds. Then, by Corollary 4.4.3, one can

say directly the presentation PD is 0-Cockcroft.

5.3 Some minimal but inefficient presentations

As we mentioned in Chapter 1, a presentation is efficient if and only if it is p-Cockcroft,

for some prime p. It follows from Theorems 5.2.1 and 4.4.1 that the presentation PD,

as in (5.1), is efficient if and only if there is a prime p such that

• expy(S) ≡ 0 (mod p) for all y ∈ y,

• expS(BS,x) ≡ 1 (mod p),

in other words, if and only if

hcf(expy(S) (y ∈ y), expS(BS,x)− 1) 6= 1.

In particular, PD is not efficient if

expS(BS,x) = 0 or 2.

Let d = hcf(expy(S) (y ∈ y)). The value of d will be taken to be 0 if all exponent

sums are 0 in hcf(expy(S) : y ∈ y).

Our main result of this chapter is the following.

Theorem 5.3.1 The presentation PD, as in (5.1), is minimal (but not efficient) if

d 6= 2n and expS(BS,x) = 2,

for any n ∈ Z+.

To prove this theorem, we need the following material.

Let us consider the picture PS,x, as in Figure 5.1.
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Recall that, for a fixed y ∈ y,
∂

∂y
denotes Fox derivation with respect to y, and

∂D

∂y
is the composition

ZF (y)
∂
∂y−→ ZF (y) −→ ZD,

where F (y) is the free monoid on y. Moreover, for the relator S, we define
∂DS

∂y
to be

∂DS+

∂y
− ∂DS−

∂y
.

For a fixed y ∈ y, let us write

S+ = U0yU1y · · ·Ur−1yUr and S− = V0yV1y · · ·Vk−1yVk,

where each Ui (1 6 i 6 r) and Vj (1 6 j 6 k) is a word on y − {y}. Then, for this

particular y, the left evaluations of the positive atomic pictures in PS,x (see Chapter 1)

containing a Tyx disc are

U0eTyx , U0yU1eTyx , · · · , U0y · · ·Ur−1eTyx ,

and the left evaluations of the negative atomic pictures in PS,x containing a Tyx disc

are

−V0eTyx , −V0yV1eTyx , · · · ,−V0y · · ·Vr−1eTyx .

Hence, for a fixed y, the coefficient of eTyx in eval(l)(PS,x) is

U0 + U0yU1 + · · ·+ U0y · · ·Ur−1 − (V0 + V0yV1 + · · ·+ V0y · · ·Vr−1) =
∂DS

∂y
. (5.6)

Lemma 5.3.2 The second Fox ideal I
(l)
2 (PD) of PD is generated by the elements

1− x̄(eval(l)(BS,x)) and
∂DS

∂y
(y ∈ y).

Proof. Since D(PD) has a trivialiser XD consisting of the single picture PS,x, we need

to consider eval(l)(PS,x). We have

eval(l)(PS,x) = λPS,x,SeS +
∑
y∈y

λPS,x,TyxeTyx ,
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where

λPS,x,S = (1− x̄(eval(l)(BS,x))),

λPS,x,Tyx =
∂DS

∂y
(y ∈ y) by (5.6).

Thus, by Remark 1.3.4, we get the result. �

Lemma 5.3.3

aug(eval(l)(BS,x)) = expS(BS,x).

Proof. We can write

eval(l)(BS,x) = ε1W1eS + ε2W2eS + · · ·+ εnWneS,

where εi = ±1 and the Wi’s are certain words on y (1 6 i 6 n). In the above expres-

sion, each term εiWieS corresponds to a single S-disc. Also, the value of each εi gives

the sign of this single S-disc. Therefore the sum of the εi’s, that is, aug(eval(l)(BS,x))

must give the exponent sum of the S-discs in the picture BS,x, as required. �

The following lemma is a special case of Lemma 1.3.1 on Fox derivations (see Section

1.3.1).

Lemma 5.3.4

aug(
∂DS

∂y
) = expy(S) (y ∈ y).

Now we can prove Theorem 5.3.1, as follows.

Suppose that d is not equal to 2n (n ∈ Z+). Let

Zd =

 Z d = 0

Z (mod d) d 6= 0
.

Suppose also that expS(BS,x) = 2.

Let us consider the homomorphism from D onto the infinite cyclic monoid generated

by x, defined by

y 7−→ 1 (y ∈ y), x 7−→ x.
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This induces a ring homomorphism

γ : ZD −→ Z[x].

Note that the restriction of γ to the subring ZK of ZD is just the augmentation map

aug : ZK −→ Z.

Thus, by Lemmas 5.3.3 and 5.3.4, the image of I
(l)
2 (PD) under γ is the ideal of Z[x]

generated by

1− x̄(expS(BS,x)) = 1− 2x̄, expy(S) (y ∈ y).

Let η be the composition of γ and the mapping

Z[x] −→ Zd[x], x 7−→ x, n 7−→ n (n ∈ Z),

where n is n (mod d). Then, since expy(S) ≡ 0 (mod d) (y ∈ y), we get

η(I
(l)
2 (PD)) = < 1− 2x̄ >

= I, say.

Lemma 5.3.5

I 6= Zd[x].

Proof. For simplicity, we shall replace x̄ by x and 2 by 2. Thus we have I =< 1−2x >.

Then

< 1− 2x >= {p(x)(1− 2x) : p(x) ∈ Zd[x]}. (5.7)

Suppose that < 1 − 2x >= Zd[x] or equivalently, 1 ∈ I. So, 1 = (1 − 2x)p(x)

for some polynomial p(x) ∈ Zd[x]. Write p(x) = a0 + a1x + a2x
2 + · · · + arx

r where

a0, a1, a2, · · · , ar ∈ Zd. Then

1 = a0 + (a1 − 2a0)x+ (a2 − 2a1)x2 + · · ·+ (ar − 2ar−1)xr − 2arx
r+1.

Thus a0 − 1 ≡ 0 (mod d), a1 − 2a0 ≡ 0 (mod d), · · · , ar − 2ar−1 ≡ 0 (mod d) and

−2ar ≡ 0 (mod d). Since d 6= 1, 2n, we can choose an odd prime p such that p | d.
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So, p | −ar (since p is odd then p does not divide 2, but we know that p | d and

−2ar ≡ 0 (mod d) then p | −ar). Also, since p | d, ar − 2ar−1 ≡ 0 (mod d) then

p | −2ar−1 ⇒ p | −ar−1. Similarly, since p | d and ar−1 − 2ar−2 ≡ 0 (mod d) then

p | −2ar−2 ⇒ p | −ar−2. By iterating this procedure, we get p | a0. Thus, since p | d and

a0− 1 ≡ 0 (mod d) then p | 1. But it is a contradiction. Therefore < 1− 2x >6= Zd[x],

as required. �

Let ψ be the composition

ZD η−→ Zd[x]
φ−→ Zd[x]/I,

where φ is the natural epimorphism. Then ψ sends I
(l)
2 (PD) to 0, and ψ(1) = 1. In

other words, the images of the generators of I2(PD) are all 0 under ψ. That is,

ψ(1− x̄(eval(l)(BS,x))) = φη(1− x̄(eval(l)(BS,x)))

= φ(1− x̄(expS(BS,x)) since η is a ring

homomorphism and by Lemma 5.3.3

= φ(1− x̄2) since expS(BS,x) = 2

= 0,

and, for all y ∈ y

ψ(
∂DS

∂y
) = φη(

∂DS

∂y
)

= φ(expy(S)) since η is a ring

homomorphism and by Lemma 5.3.4

= φ(0) since expy(S) ≡ 0 (mod d)

= 0.

So, by Theorem 1.3.15 (Pride), PD is minimal.

Hence the result. �

Again for simplicity, let us replace x̄ by x and 2 by 2.
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Remark 5.3.6 Suppose that d = 2n (n ∈ Z+). Then we get 1 ∈< 1 − 2x >, and so

< 1− 2x >= Zd[x].

(To see this it is enough to show 2 ∈ I =< 1 − 2x >, because we certainly have

1− 2x ∈ I and if 2 ∈ I then we must have 1 ∈ I. So let us take 1− 2x ∈ I. Then, by

(5.7), we have

2n−1(1− 2x) ∈ I ⇒ 2n−1 − 2nx ∈ I = 2n−1 ∈ I since 2nx = 0 in Zd[x]⇒

2n−2(1− 2x) ∈ I ⇒ 2n−2 − 2n−1x ∈ I ⇒ 2n−2 ∈ I since 2n−1 ∈ I by the above line⇒

· · · by iterating this procedure, we get · · · ⇒ 2 ∈ I ⇒ 1 ∈ I,

as required.)

Example 5.2.2 (continued) Since

expy1(S) = expy2(S) = 0,

then we get d = 0. Also, by Lemma 5.2.3, expS(BS,x) = detM. ♦

Thus, as a consequence of Theorem 5.3.1, we get

Corollary 5.3.7 Let det M = 2. Then the presentation PD, as in (5.2), is minimal

but not efficient.

Example 5.3.8 One can choose the matrix M =

 3 1

1 1

 . Then we get a presenta-

tion PD, as in (5.2), for the monoid D = K oθ A where

S : y1y2 = y2y1, Ty1x : y1x = xy3
1y2 and Ty2x : y2x = xy1y2,

respectively. Thus, by Corollary 5.3.7, PD is minimal.

Example 5.2.5 (continued) Here we have

expy1(S) = 2− k, expy2(S) = 0.

So d = k− 2. Also, expS(BS,x) = i. Then, as a consequence of Theorem 5.3.1, we have

the following result. ♦

108



Corollary 5.3.9 The presentation PD, as in (5.3) is minimal (but inefficient) if

k 6= 2(2n−1 − 1) and i = 2,

where n ∈ Z+.

Example 5.2.8 (continued) Since expy1(S) = expy2(S) = 0 then d = 0. Also,

expS(BS,x) = ij.

Then, as a consequence of Theorem 5.3.1, the minimality of PD can be given as follows.

♦

Corollary 5.3.10 The presentation PD, as in (5.4) is minimal (but inefficient) if

(i, j) = (1, 2), (2, 1).

Example 5.2.11 (continued) We have

expy1(S) = 1− k, expy2(S) = 0,

so that d = k − 1. We also have expS(BS,x) = i. Thus, again as a consequence of

Theorem 5.3.1, we get the following result. ♦

Corollary 5.3.11 The presentation PD, as in (5.5) is minimal (but inefficient) if

k 6= 2n − 1 and i = 2,

where n ∈ Z+.
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